In this article, we analyse the convergence behaviour and scalability properties of the one-level Parallel Schwarz method (PSM) for domain decomposition problems in which the boundaries of many subdomains lie in the interior of the global domain. Such problems arise, for instance, in solvation models in computational chemistry. Existing results on the scalability of the one-level PSM are limited to situations where each subdomain has access to the external boundary, and at most only two subdomains have a common overlap. We develop a systematic framework that allows us to bound the norm of the Schwarz iteration operator for domain decomposition problems in which subdomains may be completely embedded in the interior of the global domain and an arbitrary number of subdomains may have a common overlap.
DOI: 10.5802/smai-jcm.61
Keywords: Domain decomposition methods; Schwarz methods; chain of atoms; Laplace equation; ddCOSMO; Scalability analysis.
Gabriele Ciaramella 1; Muhammad Hassan 2; Benjamin Stamm 2
@article{SMAI-JCM_2020__6__33_0, author = {Gabriele Ciaramella and Muhammad Hassan and Benjamin Stamm}, title = {On the {Scalability} of the {Schwarz} {Method}}, journal = {The SMAI Journal of computational mathematics}, pages = {33--68}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {6}, year = {2020}, doi = {10.5802/smai-jcm.61}, zbl = {07207993}, mrnumber = {4100531}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.61/} }
TY - JOUR AU - Gabriele Ciaramella AU - Muhammad Hassan AU - Benjamin Stamm TI - On the Scalability of the Schwarz Method JO - The SMAI Journal of computational mathematics PY - 2020 SP - 33 EP - 68 VL - 6 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.61/ DO - 10.5802/smai-jcm.61 LA - en ID - SMAI-JCM_2020__6__33_0 ER -
%0 Journal Article %A Gabriele Ciaramella %A Muhammad Hassan %A Benjamin Stamm %T On the Scalability of the Schwarz Method %J The SMAI Journal of computational mathematics %D 2020 %P 33-68 %V 6 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.61/ %R 10.5802/smai-jcm.61 %G en %F SMAI-JCM_2020__6__33_0
Gabriele Ciaramella; Muhammad Hassan; Benjamin Stamm. On the Scalability of the Schwarz Method. The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 33-68. doi : 10.5802/smai-jcm.61. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.61/
[1] Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A, Volume 102 (1998) no. 11, pp. 1995-2001 | DOI
[2] Domain decomposition for implicit solvation models, J. Chem. Phys., Volume 139 (2013), 054111 | DOI
[3] On the scalability of classical one-level domain-decomposition methods, Vietnam J. Math., Volume 46 (2018) no. 4, pp. 1053-1088 | DOI | MR | Zbl
[4] Analysis of the parallel Schwarz Method for growing chains of fixed-sized subdomains: Part I, SIAM J. Numer. Anal., Volume 55 (2017) no. 3, pp. 1330-1356 | DOI | MR | Zbl
[5] Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part II, SIAM J. Numer. Anal., Volume 56 (2018) no. 3, pp. 1498-1524 | DOI | MR | Zbl
[6] Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III, Electron. Trans. Numer. Anal., Volume 49 (2018), pp. 201-243 | MR | Zbl
[7] Methods of reflections: relations with Schwarz methods and classical stationary iterations, scalability and preconditioning (2018) (preprint, https://hal.archives-ouvertes.fr/hal-01930232) | Zbl
[8] On the scalability of the parallel Schwarz Method in One-Dimension (2019) to appear in Proceedings of the 25th International Conference on Domain Decomposition Methods (St. John’s, Canada)
[9] Non-geometric convergence of the classical alternating Schwarz method (2019) to appear in Proceedings of the 25th International Conference on Domain Decomposition Methods (St. John’s, Canada)
[10] Schwarz methods over the course of time, Electron. Trans. Numer. Anal., Volume 31 (2008), pp. 228-255 | MR | Zbl
[11] Does the partition of unity influence the convergence of Schwarz methods? (2019) to appear in Proceedings of the 25th International Conference on Domain Decomposition Methods (St. John’s, Canada)
[12] An integral equation formulation of the -body dielectric spheres problem. Part I: Numerical analysis (2019) (https://arxiv.org/abs/1902.01315)
[13] Overlapping Schwarz waveform relaxation for the heat equation in N dimensions, BIT Numer. Math., Volume 42 (2002) no. 4, pp. 779-795 | DOI | MR | Zbl
[14] Approximate methods of higher analysis, 1958 (translated from the third Russian edition by C. D. Benster) | Zbl
[15] COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2 (1993), pp. 799-805 | DOI
[16] An integral equation approach to calculate electrostatic interactions in many-body dielectric systems, J. Comput. Phys., Volume 371 (2018), pp. 712-731 | DOI | MR | Zbl
[17] , First International Symposium on Domain Decomposition Methods for Partial Differential Equations (1988), pp. 1-42 | Zbl
[18] , Second International Symposium on Domain Decomposition Methods for Partial Differential Equations (1989), pp. 47-70 | Zbl
[19] Quantum calculations in solution for large to very large molecules: A new linear scaling QM/continuum approach, J. Phys. Chem. Lett., Volume 5 (2014) no. 6, pp. 953-958 | DOI
[20] Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy, J. Chem. Phys., Volume 141 (2014) no. 18, 184108 | DOI
[21] Fast domain decomposition algorithm for continuum solvation models: Energy and first derivatives, J. Chem. Theory Comput., Volume 9 (2013) no. 8, pp. 3637-3648 | DOI
[22] Uniform convergence of the Schwarz alternating method for solving singularly perturbed advection-diffusion equations, SIAM J. Numer. Anal., Volume 35 (1998) no. 4, pp. 1663-1683 | DOI | MR | Zbl
[23] Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett., Volume 73 (1980) no. 2, pp. 393-398 | DOI
[24] A domain decomposition method for the polarizable continuum model based on the solvent excluded surface, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 7, pp. 1233-1266 | DOI | MR | Zbl
[25] UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., Volume 114 (1992) no. 25, pp. 10024-10035 | DOI
[26] Domain decomposition methods: Algorithms and theory, Springer, 2006
[27] A new method for incorporating solvent effect into the classical, ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity, Chem. Phys. Lett., Volume 240 (1995) no. 4, pp. 253-260 | DOI
[28] Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., Volume 49 (2011) no. 4, pp. 1715-1735 | DOI | MR | Zbl
Cited by Sources: