A new fully-mixed formulation is advanced for the stationary Oberbeck–Boussinesq problem when viscosity depends on both temperature and concentration of a solute. Following recent ideas in the context of mixed methods for Boussinesq and Navier–Stokes systems, the velocity gradient and the Bernoulli stress tensor are taken as additional field variables in the momentum and mass equilibrium equations. Similarly, the gradients of temperature and concentration together with a Bernoulli vector are considered as unknowns in the heat and mass transfer equations. Consequently, a dual-mixed approach with Dirichlet data is defined in each sub-system, and the well-known Banach and Brouwer theorems are combined with Babuška–Brezzi’s theory in each independent set of equations, yielding the solvability of the continuous and discrete schemes. We show that our development also applies to the case where the equations of thermal energy and solute transport are coupled through cross-diffusion. Appropriate finite element subspaces are specified, and optimal a priori error estimates are derived. Furthermore, a reliable and efficient residual-based a posteriori error estimator is proposed. Several numerical examples illustrate the performance of the fully-mixed scheme and of the adaptive refinement algorithm driven by the error estimator.
DOI: 10.5802/smai-jcm.64
Keywords: Oberbeck–Boussinesq equations, fully–mixed formulation, fixed-point theory, finite element methods, a priori error analysis
Eligio Colmenares 1; Gabriel N. Gatica 2; Sebastián Moraga 3; Ricardo Ruiz-Baier 4
@article{SMAI-JCM_2020__6__125_0, author = {Eligio Colmenares and Gabriel N. Gatica and Sebasti\'an Moraga and Ricardo Ruiz-Baier}, title = {A fully-mixed finite element method for the steady state {Oberbeck{\textendash}Boussinesq} system}, journal = {The SMAI Journal of computational mathematics}, pages = {125--157}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {6}, year = {2020}, doi = {10.5802/smai-jcm.64}, mrnumber = {4135811}, zbl = {07219867}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.64/} }
TY - JOUR AU - Eligio Colmenares AU - Gabriel N. Gatica AU - Sebastián Moraga AU - Ricardo Ruiz-Baier TI - A fully-mixed finite element method for the steady state Oberbeck–Boussinesq system JO - The SMAI Journal of computational mathematics PY - 2020 SP - 125 EP - 157 VL - 6 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.64/ DO - 10.5802/smai-jcm.64 LA - en ID - SMAI-JCM_2020__6__125_0 ER -
%0 Journal Article %A Eligio Colmenares %A Gabriel N. Gatica %A Sebastián Moraga %A Ricardo Ruiz-Baier %T A fully-mixed finite element method for the steady state Oberbeck–Boussinesq system %J The SMAI Journal of computational mathematics %D 2020 %P 125-157 %V 6 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.64/ %R 10.5802/smai-jcm.64 %G en %F SMAI-JCM_2020__6__125_0
Eligio Colmenares; Gabriel N. Gatica; Sebastián Moraga; Ricardo Ruiz-Baier. A fully-mixed finite element method for the steady state Oberbeck–Boussinesq system. The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 125-157. doi : 10.5802/smai-jcm.64. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.64/
[1] The non-linear energy stability of Brinkman thermosolutal convection with reaction, Ric. di Mat., Volume 65 (2016) no. 2, pp. 381-397 | DOI | MR | Zbl
[2] Boundary Control Problems for Oberbeck–Boussinesq Model of Heat and Mass Transfer, Advanced Topics in Mass Transfer, IntechOpen, 2011, pp. 485-512 | DOI | Zbl
[3] , Proceedings of the World Congress on Engineering 2013 Vol III (2013), pp. 1681-1686 | Zbl
[4] Simulation of contaminant dispersion on the cray X1: Verification and implementation, J. Aerosp. Comput. Inf. Commun., Volume 8 (2004), pp. 341-361 | DOI
[5] A priori and a posteriori error estimates for Boussinesq equations, Int. J. Numer. Anal. Model., Volume 2 (2005) no. 2, pp. 179-196 | MR | Zbl
[6] A fully-mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent parameters, Comput. Methods Appl. Math., Volume 20 (2020) no. 2, pp. 187-213 | DOI | MR | Zbl
[7] A new mixed finite element method for the -dimensional Boussinesq problem with temperature-dependent viscosity, Netw. Heterog. Media, Volume 15 (2020) no. 2, pp. 215-245 | DOI | MR | Zbl
[8] The FEniCS Project Version 1.5, Arch. Numer. Softw., Volume 3 (2015) no. 100, pp. 9-23
[9] New mixed finite element methods for natural convection with phase-change in porous media, J. Sci. Comput., Volume 80 (2019) no. 1, pp. 141-174 | DOI | MR | Zbl
[10] An augmented mixed-primal finite element method for a coupled flow-transport problem, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 5, pp. 1399-1427 | DOI | MR | Zbl
[11] Couplage des équations de Navier-Stokes et de la chaleur : le modèle et son approximation par éléments finis, ESAIM, Math. Model. Numer. Anal., Volume 29 (1995) no. 7, pp. 871-921 | DOI | Numdam | Zbl
[12] Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal., Volume 8 (2009) no. 1, pp. 95-121 | DOI | MR | Zbl
[13] Mixed Finite Element Methods and Applications, 1, Springer, 2013, pp. 1-691 | DOI | Zbl
[14] An analysis of the finite element method for natural convection problems, Numer. Methods Partial Differ. Equ., Volume 6 (1990) no. 2, pp. 115-126 | DOI | MR | Zbl
[15] Mixed and Hybrid Finite Element Methods, Springer, 1991 | DOI | Zbl
[16] On H(div)-conforming methods for double-diffusion equations in porous media, SIAM J. Numer. Anal., Volume 57 (2019) no. 3, pp. 1318-1343 | DOI | MR | Zbl
[17] New fully-mixed finite element methods for the Stokes-Darcy coupling, Comput. Methods Appl. Mech. Eng., Volume 295 (2015), pp. 362-395 | DOI | MR | Zbl
[18] A posteriori error analysis of a fully-mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity, Comput. Methods Appl. Mech. Eng., Volume 315 (2017), pp. 943-971 | DOI | MR | Zbl
[19] Heat Transfer in Geothermal Systems, Adv. Heat Transf., Volume 14 (1979) no. C, pp. 1-105 | DOI
[20] Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, 2013 | Zbl
[21] Finite element analysis of a projection-based stabilization method for the Darcy-Brinkman equations in double-diffusive convection, Appl. Numer. Math., Volume 64 (2013), pp. 35-49 | DOI | MR | Zbl
[22] A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem, ESAIM, Math. Model. Numer. Anal. (2020) | DOI | MR | Zbl
[23] An augmented fully-mixed finite element method for the stationary Boussinesq problem, Calcolo, Volume 54 (2017) no. 1, pp. 167-205 | DOI | MR | Zbl
[24] Dual-mixed finite element methods for the stationary Boussinesq problem, Comput. Math. Appl., Volume 72 (2016) no. 7, pp. 1828-1850 | DOI | MR | Zbl
[25] Stabilized finite element methods for the Oberbeck–-Boussinesq model, J. Sci. Comput., Volume 69 (2016) no. 1, pp. 244-273 | DOI | MR | Zbl
[26] A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., Volume 33 (1996) no. 3, pp. 1106-1124 | DOI | MR | Zbl
[27] Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer, 2004 | MR | Zbl
[28] A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions, Math. Comput., Volume 69 (2000) no. 231, pp. 965-987 | DOI | MR | Zbl
[29] A refined mixed finite element method for the Boussinesq equations in polygonal domains, IMA J. Numer. Anal., Volume 21 (2001) no. 2, pp. 525-551 | DOI | MR | Zbl
[30] A Simple Introduction to the Mixed Finite Element Method, Springer, 2014 | DOI | Zbl
[31] A posteriori error analysis of Banach spaces-based fully-mixed finite element methods for the Boussinesq and related models (in preparation)
[32] The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion, Int. J. Heat Mass Transf., Volume 14 (1971) no. 12, pp. 2025-2050 | DOI | Zbl
[33] Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., Volume 79 (2009) no. 11, pp. 1309-1331 | DOI | MR | Zbl
[34] Numerical study of coupled heat and mass transfer in a trapezoidal cavity, Eng. Appl. Comput. Fluid Mech., Volume 1 (2007) no. 3, pp. 216-226 | DOI
[35] Inf-sup conditions for twofold saddle point problems, Numer. Math., Volume 118 (2011) no. 4, pp. 663-693 | DOI | MR | Zbl
[36] Several iterative schemes for the stationary natural convection equations at different Rayleigh numbers, Numer. Methods Partial Differ. Equ., Volume 31 (2015) no. 3, pp. 761-776 | DOI | MR | Zbl
[37] Thermo-fluid dynamics of two-phase flow, Springer, 2006, pp. 1-462 | DOI | Zbl
[38] Non-darcian effects on double-diffusive convection within a porous medium, Numer. Heat Transf. Part A Appl., Volume 31 (1997) no. 8, pp. 837-852 | DOI
[39] Partitioned coupling of advection–diffusion–reaction systems and Brinkman flows, J. Comput. Phys., Volume 344 (2017), pp. 281-302 | DOI | MR | Zbl
[40] Convection in Porous Media, Springer, 2017, pp. 629-982 | DOI | Zbl
[41] Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters, J. Comput. Appl. Math., Volume 323 (2017), pp. 71-94 | DOI | MR | Zbl
[42] Natural convection flows adjacent to horizontal surfaces resulting from the combined buoyancy effects of thermal and mass diffusion, Int. J. Heat Mass Transf., Volume 15 (1972) no. 2, pp. 269-278 | DOI | Zbl
[43] Numerical Approximation of Partial Differential Equations (Springer Series in Computational Mathematics), Springer Series in Computational Mathematics, 23, Springer, 1996 | DOI | Zbl
[44] Natural convection flow with combined buoyancy effects due to thermal and mass diffusion in a thermally stratified media, Nonlinear Anal. Model. Control, Volume 9 (2004) no. 1, pp. 89-102 | DOI | Zbl
[45] Conforming finite element methods for incompressible and nearly incompressible continua, NASA STI/Recon Tech. Rep. N., Volume 22 (1984), pp. 221-244 | Zbl
[46] Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients, Numer. Math., Volume 100 (2005) no. 2, pp. 351-372 | DOI | MR | Zbl
[47] A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013 | DOI | Zbl
[48] Stability and finite element approximation of phase change models for natural convection in porous media, J. Comput. Appl. Math., Volume 360 (2019), pp. 117-137 | DOI | MR | Zbl
Cited by Sources: