On the convergence of the regularized entropy-based moment method for kinetic equations
The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 1-29.

The entropy-based moment method is a well-known discretization for the velocity variable in kinetic equations which has many desirable theoretical properties but is difficult to implement with high-order numerical methods. The regularized entropy-based moment method was recently introduced to remove one of the main challenges in the implementation of the entropy-based moment method, namely the requirement of the realizability of the numerical solution. In this work we use the method of relative entropy to prove the convergence of the regularized method to the original method as the regularization parameter goes to zero and give convergence rates. Our main assumptions are the boundedness of the velocity domain and that the original moment solution is Lipschitz continuous in space and bounded away from the boundary of realizability. We provide results from numerical simulations showing that the convergence rates we prove are optimal.

Published online:
DOI: 10.5802/smai-jcm.93

Graham W. Alldredge 1; Martin Frank 2; Jan Giesselmann 3

1 Berlin, Germany
2 Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
3 Department of Mathematics, Technical University of Darmstadt, Darmstadt, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2023__9__1_0,
     author = {Graham W. Alldredge and Martin Frank and Jan Giesselmann},
     title = {On the convergence of the regularized entropy-based moment method for kinetic equations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {1--29},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.93},
     zbl = {07650810},
     mrnumber = {4573690},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.93/}
}
TY  - JOUR
AU  - Graham W. Alldredge
AU  - Martin Frank
AU  - Jan Giesselmann
TI  - On the convergence of the regularized entropy-based moment method for kinetic equations
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 1
EP  - 29
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.93/
DO  - 10.5802/smai-jcm.93
LA  - en
ID  - SMAI-JCM_2023__9__1_0
ER  - 
%0 Journal Article
%A Graham W. Alldredge
%A Martin Frank
%A Jan Giesselmann
%T On the convergence of the regularized entropy-based moment method for kinetic equations
%J The SMAI Journal of computational mathematics
%D 2023
%P 1-29
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.93/
%R 10.5802/smai-jcm.93
%G en
%F SMAI-JCM_2023__9__1_0
Graham W. Alldredge; Martin Frank; Jan Giesselmann. On the convergence of the regularized entropy-based moment method for kinetic equations. The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 1-29. doi : 10.5802/smai-jcm.93. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.93/

[1] Graham W. Alldredge; Martin Frank; Cory D. Hauck A regularized entropy-based moment method for kinetic equations, SIAM J. Appl. Math., Volume 79 (2019) no. 5, pp. 1627-1653 | DOI | MR | Zbl

[2] Graham W. Alldredge; Florian Schneider A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension, J. Comput. Phys., Volume 295 (2015), pp. 665-684 | DOI | MR | Zbl

[3] Florent Berthelin; Athanasios E. Tzavaras; Alexis Vasseur From discrete velocity Boltzmann equations to gas dynamics before shocks, J. Stat. Phys., Volume 135 (2009) no. 1, pp. 153-173 | DOI | MR | Zbl

[4] Florent Berthelin; Alexis Vasseur From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., Volume 36 (2005) no. 6, pp. 1807-1835 | DOI | MR | Zbl

[5] Jonathan M. Borwein; Adrian S. Lewis Duality Relationships for Entropy-Like Minimization Problems, SIAM J. Control Optim., Volume 29 (1991) no. 2, pp. 325-338 | DOI | MR | Zbl

[6] Stephen Boyd; Lieven Vandenberghe Convex optimization, Cambridge University Press, 2004 | DOI

[7] Carlo Cercignani The Boltzmann Equation and Its Applications, Springer, 1988 | DOI

[8] Jean-François Coulombel; Thierry Goudon Entropy-Based Moment Closure For Kinetic Equations: Riemann Problem And Invariant Regions, J. Hyperbolic Differ. Equ., Volume 6 (2006), pp. 649-671 | DOI | MR | Zbl

[9] Constantine M. Dafermos Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, 2016, xxxviii+826 pages | DOI | MR

[10] Lawrence C. Evans Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010

[11] Jan Giesselmann; Corrado Lattanzio; Athanasios E. Tzavaras Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 3, pp. 1427-1484 | DOI | MR | Zbl

[12] Jan Giesselmann; Athanasios E. Tzavaras Stability properties of the Euler-Korteweg system with nonmonotone pressures, Appl. Anal., Volume 96 (2017) no. 9, pp. 1528-1546 | DOI | MR | Zbl

[13] Cory D. Hauck High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., Volume 9 (2011), pp. 187-205 | DOI | MR | Zbl

[14] Cory D. Hauck; C. David Levermore; André L. Tits Convex Duality and Entropy-Based Moment Closures: Characterizing Degenerate Densities, SIAM J. Control Optim., Volume 47 (2008) no. 4, pp. 1977-2015 | DOI | MR | Zbl

[15] Michael Junk Domain of Definition of Levermore’s Five Moment System, J. Stat. Phys., Volume 93 (1998) no. 5-6, pp. 1143-1167 | DOI | MR | Zbl

[16] Michael Junk Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci., Volume 10 (2000), pp. 1001-1025 | DOI | MR | Zbl

[17] Sam G. Krupa Criteria for the a-contraction and stability for the piecewise-smooth solutions to hyperbolic balance laws, Commun. Math. Sci., Volume 18 (2020), pp. 1493-1537 | DOI | MR | Zbl

[18] C. David Levermore Moment Closure Hierarchies for Kinetic Theories, J. Stat. Phys., Volume 83 (1996), pp. 1021-1065 | DOI | MR | Zbl

[19] E. E. Lewis; W. F. Miller Computational Methods in Neutron Transport, John Wiley & Sons, 1984

[20] Peter A. Markowich; Christian A. Ringhofer; Christian Schmeiser Semiconductor Equations, Springer, 1990 | DOI

[21] Dimitri Mihalas; Barbara Weibel-Mihalas Foundations of Radiation Hydrodynamics, Courier Corporation, 1999

[22] Denis Serre; Alexis Vasseur About the relative entropy method for hyperbolic systems of conservation laws, A panorama of mathematics: pure and applied (Contemporary Mathematics), Volume 658, American Mathematical Society, 2016, pp. 237-248 | DOI | MR | Zbl

[23] Athanasios E. Tzavaras Relative entropy in hyperbolic relaxation, Commun. Math. Sci., Volume 3 (2005) no. 2, pp. 119-132 | DOI | MR | Zbl

Cited by Sources: