A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws
The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 31-60.

We propose and study a family of formally second-order accurate schemes to approximate weak solutions of hyperbolic systems of conservation laws. Theses schemes are based on a dissipative property satisfied by the second-order discretization in space. They are proven to satisfy a global entropy inequality for a generic strictly convex entropy. These schemes do not involve limitation techniques. Numerical results are provided to illustrate their accuracy and stability.

Published online:
DOI: 10.5802/smai-jcm.94
Classification: 65N08, 35L65, 35L67
Keywords: Systems of conservation laws, Second-order finite Volume schemes, Explicit schemes, Global entropy inequality.

Mehdi Badsi 1; Christophe Berthon 1; Ludovic Martaud 1

1 Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2023__9__31_0,
     author = {Mehdi Badsi and Christophe Berthon and Ludovic Martaud},
     title = {A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws},
     journal = {The SMAI Journal of computational mathematics},
     pages = {31--60},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.94},
     zbl = {1507.65221},
     mrnumber = {4573691},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/}
}
TY  - JOUR
AU  - Mehdi Badsi
AU  - Christophe Berthon
AU  - Ludovic Martaud
TI  - A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 31
EP  - 60
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/
DO  - 10.5802/smai-jcm.94
LA  - en
ID  - SMAI-JCM_2023__9__31_0
ER  - 
%0 Journal Article
%A Mehdi Badsi
%A Christophe Berthon
%A Ludovic Martaud
%T A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws
%J The SMAI Journal of computational mathematics
%D 2023
%P 31-60
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/
%R 10.5802/smai-jcm.94
%G en
%F SMAI-JCM_2023__9__31_0
Mehdi Badsi; Christophe Berthon; Ludovic Martaud. A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws. The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 31-60. doi : 10.5802/smai-jcm.94. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/

[1] Christophe Berthon Stability of the MUSCL schemes for the Euler equations, Comm. Math. Sci, Volume 3 (2005) no. 2, pp. 133-158 | DOI | MR | Zbl

[2] Christophe Berthon Numerical approximations of the 10-moment Gaussian closure, Math. Comput., Volume 75 (2006) no. 256, pp. 1809-1832 | DOI | MR | Zbl

[3] François Bouchut Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., Volume 95 (1999) no. 1-2, pp. 113-170 | DOI | MR | Zbl

[4] François Bouchut Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser, 2004, viii+135 pages | DOI

[5] François Bouchut; Christian Bourdarias; Benoit Perthame A MUSCL method satisfying all the numerical entropy inequalities, Math. Comput., Volume 65 (1996) no. 216, pp. 1439-1462 | DOI | MR

[6] Manuel J. Castro; Ulrik S. Fjordholm; Siddhartha Mishra; Carlos Parés Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., Volume 51 (2013) no. 3, pp. 1371-1391 | DOI | MR | Zbl

[7] Christophe Chalons; Philippe G. LeFloch A fully discrete scheme for diffusive-dispersive conservation laws, Numer. Math., Volume 89 (2001) no. 3, pp. 493-509 | DOI | MR | Zbl

[8] Bernardo Cockburn; Frédéric Coquel; Philippe G. LeFloch Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal., Volume 32 (1995) no. 3, pp. 687-705 | DOI | MR

[9] Frédéric Coquel; Jean-Marc Hérard; Khaled Saleh A splitting method for the isentropic baer-nunziato two-phase flow model, ESAIM, Proc., Volume 38 (2012), pp. 241-256 | DOI | MR | Zbl

[10] Frédéric Coquel; Benoit Perthame Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics, SIAM J. Numer. Anal., Volume 35 (1998) no. 6, pp. 2223-2249 | DOI | MR | Zbl

[11] Arnaud Duran; Fabien Marche Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms, Comput. Fluids, Volume 101 (2014), pp. 88-104 | DOI | MR | Zbl

[12] Arnaud Duran; Jean-Paul Vila; Rémy Baraille Semi-implicit staggered mesh scheme for the multi-layer shallow water system, C. R. Acad. Sci. Paris, Volume 355 (2017) no. 12, pp. 1298-1306 | DOI | Numdam | MR | Zbl

[13] Robert Eymard; Thierry Gallouët; Raphaèle Herbin Finite Volume Methods, Handbook of Numerical Analysis, 7, North-Holland, 2000, pp. 713-1020

[14] Thierry Gallouët; Raphaèle Herbin; Jean-Claude Latché; Nicolas Therme Consistent Internal Energy Based Schemes for the Compressible Euler Equations, Numerical Simulation in Physics and Engineering: Trends and Applications: Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School (SEMA SIMAI Springer Series), Volume 24, Springer, 2021, pp. 119-154 | DOI | MR | Zbl

[15] Laura Gastaldo; Raphaèle Herbin; Jean-Claude Latché; Nicolas Therme A MUSCL-type segregated–explicit staggered scheme for the Euler equations, Comput. Fluids, Volume 175 (2018), pp. 91-110 | DOI | MR | Zbl

[16] Edwige Godlewski; Pierre-Arnaud Raviart Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer, 1996 | DOI | MR

[17] Sergeĭ K. Godunov A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., N. Ser., Volume 47 (1959) no. 89, pp. 271-306 | MR

[18] Sigal Gottlieb On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., Volume 25 (2005) no. 1, pp. 105-128 | DOI | MR | Zbl

[19] Sigal Gottlieb; Chi-Wang Shu Total variation diminishing Runge–Kutta schemes, Math. Comput., Volume 67 (1998) no. 221, pp. 73-85 | DOI | MR | Zbl

[20] Sigal Gottlieb; Chi-Wang Shu; Eitan Tadmor Strong stability-preserving high-order time discretization methods, SIAM Rev., Volume 43 (2001) no. 1, pp. 89-112 | DOI | MR | Zbl

[21] Amiram Harten; Peter D. Lax A random choice finite difference scheme for hyperbolic conservation laws, SIAM J. Numer. Anal., Volume 18 (1981) no. 2, pp. 289-315 | DOI | MR | Zbl

[22] Amiram Harten; Peter D. Lax; Bram Van Leer On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., Volume 25 (1983), pp. 35-61 | DOI | MR | Zbl

[23] Raphaèle Herbin; Jean-Claude Latché; Trung T. Nguyen Consistent explicit staggered schemes for compressible flows Part I: the barotropic Euler equations (2013)

[24] Andreas Hiltebrand; Siddhartha Mishra Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., Volume 126 (2014) no. 1, pp. 103-151 | DOI | MR | Zbl

[25] Andreas Hiltebrand; Siddhartha Mishra; Carlos Parés Entropy-stable space–time DG schemes for non-conservative hyperbolic systems, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 3, pp. 995-1022 | DOI | MR | Zbl

[26] Farzad Ismail; Philip L. Roe Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys., Volume 228 (2009) no. 15, pp. 5410-5436 | DOI | MR | Zbl

[27] Brahim Khobalatte; Benoit Perthame Maximum principle on the entropy and second-order kinetic schemes, Math. Comput., Volume 62 (1994) no. 205, pp. 119-131 | DOI | MR | Zbl

[28] Peter D. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., Volume 7 (1954), pp. 159-193 | MR | Zbl

[29] Peter D. Lax Shock waves and entropy, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press Inc., 1971, pp. 603-634 | MR | Zbl

[30] Peter D. Lax Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conference Series in Applied Mathematics, 11, Society for Industrial and Applied Mathematics, 1973, v+48 pages | MR

[31] Philippe G. LeFloch Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, Lectures in Mathematics, Birkhäuser, 2002, x+294 pages | DOI

[32] Philippe G. LeFloch; Hendrik Ranocha Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts, J. Sci. Comput., Volume 87 (2021) no. 2, 55, 38 pages | DOI | MR | Zbl

[33] Sebastian Noelle; Yulong Xing; Chi-Wang Shu High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., Volume 226 (2007) no. 1, pp. 29-58 | DOI | MR | Zbl

[34] Benoit Perthame; Youchum Qiu A variant of Van Leer’s method for multidimensional systems of conservation laws, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 370-381 | DOI | MR | Zbl

[35] Benoit Perthame; Chi-Wang Shu On positivity preserving finite volume schemes for Euler equations, Numer. Math., Volume 73 (1996) no. 1, pp. 119-130 | DOI | MR | Zbl

[36] Philip L. Roe Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., Volume 43 (1981) no. 2, pp. 357-372 | DOI | MR | Zbl

[37] Viktor V. Rusanov The calculation of the interaction of non-stationary shock waves and obstacles, USSR Comput. Math. Math. Phys., Volume 1 (1962) no. 2, pp. 304-320 | DOI

[38] Denis Serre Systems of conservation laws. I: Hyperbolicity, entropies, shock waves, Cambridge University Press, 1999, xxii+263 pages (translated from the 1996 French original by I. N. Sneddon) | DOI | MR

[39] Jing Shi; Yong-Tao Zhang; Chi-Wang Shu Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., Volume 186 (2003) no. 2, pp. 690-696 | MR | Zbl

[40] Chi-Wang Shu High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, International Journal of Computational Fluid Dynamics, Volume 17 (2003) no. 2, pp. 107-118 | DOI | MR | Zbl

[41] Eitan Tadmor The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., Volume 49 (1987) no. 179, pp. 91-103 | DOI | MR | Zbl

[42] Eitan Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., Volume 12 (2003) no. 1, pp. 451-512 | DOI | MR | Zbl

[43] Eleuterio F. Toro Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, 2009 | DOI | MR

[44] Eleuterio F. Toro; M. Spruce; W. Speares Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, Volume 4 (1994) no. 1, pp. 25-34 | DOI | Zbl

[45] Bram van Leer Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., Volume 32 (1979) no. 1, pp. 101-136 | DOI | Zbl

[46] Hamed Zakerzadeh; Ulrik S. Fjordholm High-order accurate, fully discrete entropy stable schemes for scalar conservation laws, IMA J. Numer. Anal., Volume 36 (2015) no. 2, pp. 633-654 | DOI | MR | Zbl

Cited by Sources: