We propose and study a family of formally second-order accurate schemes to approximate weak solutions of hyperbolic systems of conservation laws. Theses schemes are based on a dissipative property satisfied by the second-order discretization in space. They are proven to satisfy a global entropy inequality for a generic strictly convex entropy. These schemes do not involve limitation techniques. Numerical results are provided to illustrate their accuracy and stability.
DOI: 10.5802/smai-jcm.94
Keywords: Systems of conservation laws, Second-order finite Volume schemes, Explicit schemes, Global entropy inequality.
Mehdi Badsi 1; Christophe Berthon 1; Ludovic Martaud 1
@article{SMAI-JCM_2023__9__31_0, author = {Mehdi Badsi and Christophe Berthon and Ludovic Martaud}, title = {A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws}, journal = {The SMAI Journal of computational mathematics}, pages = {31--60}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {9}, year = {2023}, doi = {10.5802/smai-jcm.94}, zbl = {1507.65221}, mrnumber = {4573691}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/} }
TY - JOUR AU - Mehdi Badsi AU - Christophe Berthon AU - Ludovic Martaud TI - A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws JO - The SMAI Journal of computational mathematics PY - 2023 SP - 31 EP - 60 VL - 9 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/ DO - 10.5802/smai-jcm.94 LA - en ID - SMAI-JCM_2023__9__31_0 ER -
%0 Journal Article %A Mehdi Badsi %A Christophe Berthon %A Ludovic Martaud %T A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws %J The SMAI Journal of computational mathematics %D 2023 %P 31-60 %V 9 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/ %R 10.5802/smai-jcm.94 %G en %F SMAI-JCM_2023__9__31_0
Mehdi Badsi; Christophe Berthon; Ludovic Martaud. A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws. The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 31-60. doi : 10.5802/smai-jcm.94. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.94/
[1] Stability of the MUSCL schemes for the Euler equations, Comm. Math. Sci, Volume 3 (2005) no. 2, pp. 133-158 | DOI | MR | Zbl
[2] Numerical approximations of the 10-moment Gaussian closure, Math. Comput., Volume 75 (2006) no. 256, pp. 1809-1832 | DOI | MR | Zbl
[3] Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., Volume 95 (1999) no. 1-2, pp. 113-170 | DOI | MR | Zbl
[4] Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser, 2004, viii+135 pages | DOI
[5] A MUSCL method satisfying all the numerical entropy inequalities, Math. Comput., Volume 65 (1996) no. 216, pp. 1439-1462 | DOI | MR
[6] Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., Volume 51 (2013) no. 3, pp. 1371-1391 | DOI | MR | Zbl
[7] A fully discrete scheme for diffusive-dispersive conservation laws, Numer. Math., Volume 89 (2001) no. 3, pp. 493-509 | DOI | MR | Zbl
[8] Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal., Volume 32 (1995) no. 3, pp. 687-705 | DOI | MR
[9] A splitting method for the isentropic baer-nunziato two-phase flow model, ESAIM, Proc., Volume 38 (2012), pp. 241-256 | DOI | MR | Zbl
[10] Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics, SIAM J. Numer. Anal., Volume 35 (1998) no. 6, pp. 2223-2249 | DOI | MR | Zbl
[11] Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms, Comput. Fluids, Volume 101 (2014), pp. 88-104 | DOI | MR | Zbl
[12] Semi-implicit staggered mesh scheme for the multi-layer shallow water system, C. R. Acad. Sci. Paris, Volume 355 (2017) no. 12, pp. 1298-1306 | DOI | Numdam | MR | Zbl
[13] Finite Volume Methods, Handbook of Numerical Analysis, 7, North-Holland, 2000, pp. 713-1020
[14] Consistent Internal Energy Based Schemes for the Compressible Euler Equations, Numerical Simulation in Physics and Engineering: Trends and Applications: Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School (SEMA SIMAI Springer Series), Volume 24, Springer, 2021, pp. 119-154 | DOI | MR | Zbl
[15] A MUSCL-type segregated–explicit staggered scheme for the Euler equations, Comput. Fluids, Volume 175 (2018), pp. 91-110 | DOI | MR | Zbl
[16] Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer, 1996 | DOI | MR
[17] A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., N. Ser., Volume 47 (1959) no. 89, pp. 271-306 | MR
[18] On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., Volume 25 (2005) no. 1, pp. 105-128 | DOI | MR | Zbl
[19] Total variation diminishing Runge–Kutta schemes, Math. Comput., Volume 67 (1998) no. 221, pp. 73-85 | DOI | MR | Zbl
[20] Strong stability-preserving high-order time discretization methods, SIAM Rev., Volume 43 (2001) no. 1, pp. 89-112 | DOI | MR | Zbl
[21] A random choice finite difference scheme for hyperbolic conservation laws, SIAM J. Numer. Anal., Volume 18 (1981) no. 2, pp. 289-315 | DOI | MR | Zbl
[22] On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., Volume 25 (1983), pp. 35-61 | DOI | MR | Zbl
[23] Consistent explicit staggered schemes for compressible flows Part I: the barotropic Euler equations (2013)
[24] Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., Volume 126 (2014) no. 1, pp. 103-151 | DOI | MR | Zbl
[25] Entropy-stable space–time DG schemes for non-conservative hyperbolic systems, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 3, pp. 995-1022 | DOI | MR | Zbl
[26] Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys., Volume 228 (2009) no. 15, pp. 5410-5436 | DOI | MR | Zbl
[27] Maximum principle on the entropy and second-order kinetic schemes, Math. Comput., Volume 62 (1994) no. 205, pp. 119-131 | DOI | MR | Zbl
[28] Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., Volume 7 (1954), pp. 159-193 | MR | Zbl
[29] Shock waves and entropy, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press Inc., 1971, pp. 603-634 | MR | Zbl
[30] Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conference Series in Applied Mathematics, 11, Society for Industrial and Applied Mathematics, 1973, v+48 pages | MR
[31] Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, Lectures in Mathematics, Birkhäuser, 2002, x+294 pages | DOI
[32] Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts, J. Sci. Comput., Volume 87 (2021) no. 2, 55, 38 pages | DOI | MR | Zbl
[33] High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., Volume 226 (2007) no. 1, pp. 29-58 | DOI | MR | Zbl
[34] A variant of Van Leer’s method for multidimensional systems of conservation laws, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 370-381 | DOI | MR | Zbl
[35] On positivity preserving finite volume schemes for Euler equations, Numer. Math., Volume 73 (1996) no. 1, pp. 119-130 | DOI | MR | Zbl
[36] Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., Volume 43 (1981) no. 2, pp. 357-372 | DOI | MR | Zbl
[37] The calculation of the interaction of non-stationary shock waves and obstacles, USSR Comput. Math. Math. Phys., Volume 1 (1962) no. 2, pp. 304-320 | DOI
[38] Systems of conservation laws. I: Hyperbolicity, entropies, shock waves, Cambridge University Press, 1999, xxii+263 pages (translated from the 1996 French original by I. N. Sneddon) | DOI | MR
[39] Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., Volume 186 (2003) no. 2, pp. 690-696 | MR | Zbl
[40] High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, International Journal of Computational Fluid Dynamics, Volume 17 (2003) no. 2, pp. 107-118 | DOI | MR | Zbl
[41] The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., Volume 49 (1987) no. 179, pp. 91-103 | DOI | MR | Zbl
[42] Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., Volume 12 (2003) no. 1, pp. 451-512 | DOI | MR | Zbl
[43] Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, 2009 | DOI | MR
[44] Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, Volume 4 (1994) no. 1, pp. 25-34 | DOI | Zbl
[45] Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., Volume 32 (1979) no. 1, pp. 101-136 | DOI | Zbl
[46] High-order accurate, fully discrete entropy stable schemes for scalar conservation laws, IMA J. Numer. Anal., Volume 36 (2015) no. 2, pp. 633-654 | DOI | MR | Zbl
Cited by Sources: