We propose a reconstruction method to solve the inverse gravimetric problem with constant mass density. The method is based on the computation of the harmonic moments of the unknown domain. Convergence results are proved and numerical experiments are provided to illustrate the method and show its efficiency.
Mots-clés : inverse gravimetric problem, shape from moments problem, Prony’s system, quadrature domains, partial balayage of measure
Anthony Gerber-Roth 1; Alexandre Munnier 1; Karim Ramdani 1
@article{SMAI-JCM_2023__9__197_0, author = {Anthony Gerber-Roth and Alexandre Munnier and Karim Ramdani}, title = {A reconstruction method for the inverse gravimetric problem}, journal = {The SMAI Journal of computational mathematics}, pages = {197--225}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {9}, year = {2023}, doi = {10.5802/smai-jcm.99}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/} }
TY - JOUR AU - Anthony Gerber-Roth AU - Alexandre Munnier AU - Karim Ramdani TI - A reconstruction method for the inverse gravimetric problem JO - The SMAI Journal of computational mathematics PY - 2023 SP - 197 EP - 225 VL - 9 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/ DO - 10.5802/smai-jcm.99 LA - en ID - SMAI-JCM_2023__9__197_0 ER -
%0 Journal Article %A Anthony Gerber-Roth %A Alexandre Munnier %A Karim Ramdani %T A reconstruction method for the inverse gravimetric problem %J The SMAI Journal of computational mathematics %D 2023 %P 197-225 %V 9 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/ %R 10.5802/smai-jcm.99 %G en %F SMAI-JCM_2023__9__197_0
Anthony Gerber-Roth; Alexandre Munnier; Karim Ramdani. A reconstruction method for the inverse gravimetric problem. The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 197-225. doi : 10.5802/smai-jcm.99. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/
[1] On the uniqueness problem for quadrature domains, Comput. Methods Funct. Theory, Volume 21 (2021) no. 3, pp. 473-504 | DOI | MR | Zbl
[2] Theoretical numerical analysis. A functional analysis framework, Texts in Applied Mathematics, 39, Springer, 2005, xviii+576 pages | DOI | MR
[3] On the accuracy of solving confluent Prony systems, SIAM J. Appl. Math., Volume 73 (2013) no. 1, pp. 134-154 | DOI | MR | Zbl
[4] Density of quadrature domains in one and several complex variables, Complex Var. Elliptic Equ., Volume 54 (2009) no. 3-4, pp. 165-171 | DOI | MR | Zbl
[5] A new reconstruction method for the inverse potential problem, J. Comput. Phys., Volume 268 (2014), pp. 417-431 | DOI | MR | Zbl
[6] Inverse logarithmic potential problem, Inverse and Ill-Posed Problems Series, Walter de Gruyter, 1996 | DOI | MR
[7] An inverse source problem in potential analysis, Inverse Probl., Volume 16 (2000) no. 3, pp. 651-663 | DOI | MR | Zbl
[8] Variational principles and free-boundary problems (Pure and Applied Mathematics), 1982, p. ix+710 | Zbl
[9] Convexity and the exterior inverse problem of potential theory, Proc. Am. Math. Soc., Volume 136 (2008) no. 5, pp. 1699-1703 | DOI | MR | Zbl
[10] Partial balayage and the exterior inverse problem of potential theory, Potential theory and stochastics in Albac. Aurel Cornea memorial volume. Conference proceedings, Albac, Romania, September 4–8, 2007 (Theta Series in Advanced Mathematics), Volume 11, The Theta Foundation, 2008, pp. 111-123 | Zbl
[11] A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput., Volume 21 (1999) no. 4, pp. 1222-1243 | DOI | MR | Zbl
[12] On quadrature domains and an inverse problem in potential theory, J. Anal. Math., Volume 55 (1990), pp. 172-216 | DOI | MR | Zbl
[13] Reconstructing planar domains from their moments, Inverse Probl., Volume 16 (2000) no. 4, pp. 1053-1070 | DOI | MR | Zbl
[14] Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Anal., Theory Methods Appl., Volume 22 (1994) no. 10, pp. 1221-1245 | DOI | MR | Zbl
[15] Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., Volume 473 (1996), pp. 137-179 | MR | Zbl
[16] What is a quadrature domain?, Quadrature domains and their applications (Operator Theory: Advances and Applications), Volume 156, Birkhäuser, 2005, pp. 1-25 | DOI | MR | Zbl
[17] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 https://freefem.org/ | MR | Zbl
[18] Iterative methods for the reconstruction of an inverse potential problem, Inverse Probl., Volume 12 (1996) no. 3, pp. 251-266 | DOI | MR | Zbl
[19] Numerically Stable and Statistically Efficient and Algorithms for Large and Scale Exponential and Fitting, Ph. D. Thesis, Rice University (2013) (https://hdl.handle.net/1911/77161) | MR
[20] Inverse source problems, Mathematical Surveys and Monographs, 34, American Mathematical Society, 1990, xiv+193 pages | DOI | Zbl
[21] A fast local level set method for inverse gravimetry, Commun. Comput. Phys., Volume 10 (2011) no. 4, pp. 1044-1070 | DOI | MR | Zbl
[22] A three-dimensional inverse gravimetry problem for ice with snow caps, Inverse Probl. Imaging, Volume 7 (2013) no. 2, pp. 523-544 | DOI | MR | Zbl
[23] Semi–Smooth Newton Methods for Variational Inequalities of the First Kind, ESAIM, Math. Model. Numer. Anal., Volume 37 (2003) no. 1, p. 41–62 | DOI | Numdam | MR | Zbl
[24] Linear integral equations, Applied Mathematical Sciences, 82, Springer, 2014, xvi+412 pages | DOI | MR
[25] A nonlinear integral equation and an iterative algorithm for an inverse source problem, J. Integral Equations Appl., Volume 27 (2015) no. 2, pp. 179-197 | DOI | MR | Zbl
[26] A level-set method for imaging salt structures using gravity data, Geophysics, Volume 81 (2016) no. 2, p. G27-G40 | DOI
[27] Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods, Inverse Probl. Imaging, Volume 15 (2021) no. 3, pp. 387-413 | DOI | MR | Zbl
[28] An improved fast local level set method for three-dimensional inverse gravimetry, Inverse Probl. Imaging, Volume 9 (2015) no. 2, pp. 479-509 | DOI | MR | Zbl
[29] Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000, xiv+357 pages | MR
[30] Reconstructing polygons from moments with connections to array processing, IEEE Trans. Signal Process., Volume 43 (1995) no. 2, pp. 432-443 | DOI
[31] The Retrieval of Harmonics from a Covariance Function, Geophys. J. Int., Volume 33 (1973) no. 3, pp. 347-366 | DOI | Zbl
[32] A survey on sampling and probe methods for inverse problems, Inverse Probl., Volume 22 (2006) no. 2, p. R1-R47 | DOI | MR | Zbl
[33] On the identification of star-shape sources from boundary measurements using a reciprocity functional, Inverse Probl. Sci. Eng., Volume 17 (2009) no. 2, pp. 187-202 | DOI | MR | Zbl
[34] Quadrature domains, Lecture Notes in Mathematics, 934, Springer, 1982 | DOI | Zbl
[35] Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments, JSIAM Lett., Volume 1 (2009), pp. 76-79 | DOI | MR | Zbl
[36] The Schwarz function and its generalization to higher dimensions, John Wiley & Sons, 1992 | Zbl
[37] Numerical approximation methods for elliptic boundary value problems, Springer, 2008 | DOI
[38] Spectral Analysis of Signals, Pearson Prentice Hall, 2005
[39] Quantum sensing for gravity cartography, Nature, Volume 602 (2022) no. 7898, pp. 590-594 | DOI
[40] Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems, J. Sci. Comput., Volume 43 (2010) no. 1, pp. 44-66 | DOI | MR | Zbl
[41] Inverse gravimetric problem in geoprospecting and geodesy. Transl. from the Bulgarian, Elsevier, 1990, 284 pages | Zbl
Cited by Sources: