Error estimate of the Non-Intrusive Reduced Basis (NIRB) two-grid method with parabolic equations
The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 227-256.

For approximating parametric problem solutions, Reduced Basis Methods (RBMs) are frequently proposed. They intend to reduce the computational costs of High Fidelity (HF) codes while maintaining the HF accuracy. They generally require an offline/online decomposition and a significant modification of the HF code in order for the online computation to be performed in short (or even real) time. We focus on the Non-Intrusive Reduced Basis (NIRB) two-grid method in this paper. Its main feature is the use of the HF code as a “black-box” on a coarse mesh for a new parameter during the online process, followed by an accuracy improvement based on the reduced basis paradigm that is realized in a very short time. Unlike other more intrusive methods, this approach does not necessitate code modification. As a result, it costs significantly less than an HF evaluation. This method was developed for elliptic equations with finite elements and has since then been extended to finite volume schemes.

In this paper, we extend the NIRB two-grid method to parabolic equations. We recover optimal estimates in natural norms, using the heat equation as a model problem and present several numerical results on the heat equation and on the Brusselator problem.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Published online:
DOI: 10.5802/smai-jcm.100
Classification: 65K05, 65N08
Keywords: Non-intrusive reduced basis, parabolic equations, finite elements method
Elise Grosjean 1; Yvon Maday 2

1 Inria Saclay Île-de-France, France
2 Sorbonne Université and Université de Paris Cité, CNRS, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France and Institut Universitaire de France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2023__9__227_0,
     author = {Elise Grosjean and Yvon Maday},
     title = {Error estimate of the {Non-Intrusive} {Reduced} {Basis} {(NIRB)} two-grid method with parabolic equations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {227--256},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.100},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.100/}
}
TY  - JOUR
AU  - Elise Grosjean
AU  - Yvon Maday
TI  - Error estimate of the Non-Intrusive Reduced Basis (NIRB) two-grid method with parabolic equations
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 227
EP  - 256
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.100/
DO  - 10.5802/smai-jcm.100
LA  - en
ID  - SMAI-JCM_2023__9__227_0
ER  - 
%0 Journal Article
%A Elise Grosjean
%A Yvon Maday
%T Error estimate of the Non-Intrusive Reduced Basis (NIRB) two-grid method with parabolic equations
%J The SMAI Journal of computational mathematics
%D 2023
%P 227-256
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.100/
%R 10.5802/smai-jcm.100
%G en
%F SMAI-JCM_2023__9__227_0
Elise Grosjean; Yvon Maday. Error estimate of the Non-Intrusive Reduced Basis (NIRB) two-grid method with parabolic equations. The SMAI Journal of computational mathematics, Volume 9 (2023), pp. 227-256. doi : 10.5802/smai-jcm.100. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.100/

[1] M. Barrault; C. Nguyen; A. T. Patera; Y. Maday An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, Volume 339-9 (2004), pp. 667-672 | DOI | Numdam | MR | Zbl

[2] G. Berkooz; P. Holmes; J. L. Lumley The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., Volume 25 (1993) no. 1, pp. 539-575 | DOI

[3] S. Brenner; R. Scott The mathematical theory of finite element methods, 15, Springer, 2007

[4] A. Buffa; Y. Maday; A. T. Patera; C. Prud’Homme; G. Turinici A priori convergence of the Greedy algorithm for the parametrized reduced basis method, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 3, pp. 595 - 603 | DOI | Numdam | MR | Zbl

[5] N. Cagniart; Y. Maday; B. Stamm Model order reduction for problems with large convection effects, Contributions to partial differential equations and applications (Computational Methods in Applied Sciences), Volume 47, Springer, 2019, pp. 131-150 | DOI | MR | Zbl

[6] F. Casenave; A. Ern; T. Lelièvre A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math., Volume 41 (2014) no. 5, p. 961–986 | DOI | MR | Zbl

[7] R. Chakir Contribution à l’analyse numérique de quelques problèmes en chimie quantique et mécanique, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI (2009) | Numdam

[8] R. Chakir; Y. Maday A two-grid finite-element/reduced basis scheme for the approximation of the solution of parametric dependent P.D.E, Actes du 9e Colloque national en calcul des structures, Giens (2009)

[9] R. Chakir; Y. Maday; P. Parnaudeau A non-intrusive reduced basis approach for parametrized heat transfer problems, J. Comput. Phys., Volume 376 (2019), pp. pp.617-633 | DOI | MR | Zbl

[10] R. Chakir; B. Streichenberger; P. Chatellier A Non-Intrusive Reduced Basis Method for Urban Flows Simulation, WCCM-ECCOMAS’20, 14th World Congress of Computational Mechanics and 8th European Congress on Computational Methods in Applied Sciences and Engineering (2021), p. 12p

[11] W. Chen; J. S. Hesthaven; B. Junqiang; Y. Qiu; Z. Yang; Y. Tihao Greedy nonintrusive reduced order model for fluid dynamics, AIAA J., Volume 56 (2018) no. 12, pp. 4927-4943 | DOI

[12] J. Duan; J. S. Hesthaven Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems (2023) | arXiv

[13] L. C. Evans Partial differential equations, American Mathematical Society, 2010

[14] S. Fresca; A. Manzoni POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Methods Appl. Mech. Eng., Volume 388 (2022), 114181, 27 pages | DOI | MR | Zbl

[15] R. Geelen; S. Wright; K. Willcox Operator inference for non-intrusive model reduction with nonlinear manifolds (2022) | arXiv

[16] E. Grosjean Variations and further developments on the Non-Intrusive Reduced Basis two-grid method, Ph. D. Thesis, Mathématiques Appliquées Sorbonne Université (2022) http://www.theses.fr/2022sorus019

[17] E. Grosjean; Y. Maday Error estimate of the non-intrusive reduced basis method with finite volume schemes, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 5, pp. 1941-1961 | DOI | MR | Zbl

[18] E. Grosjean; B. Simeon The non-intrusive reduced basis two-grid method applied to sensitivity analysis (2023) | arXiv

[19] M. Guo; J. S. Hesthaven Data-driven reduced order modeling for time-dependent problems, Comput. Methods Appl. Mech. Eng., Volume 345 (2019), pp. 75-99 | DOI | MR | Zbl

[20] B. Haasdonk Convergence rates of the pod–greedy method, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 3, pp. 859-873 | DOI | Numdam | MR | Zbl

[21] B. Haasdonk; M. Ohlberger Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM, Math. Model. Numer. Anal., Volume 42 (2008) no. 2, pp. 277-302 | DOI | Numdam | MR | Zbl

[22] W. Haik; Y. Maday; L. Chamoin A real-time variational data assimilation method with data-driven model enrichment for time-dependent problems, Comput. Methods Appl. Mech. Eng., Volume 405 (2023), 115868, 37 pages | DOI | MR | Zbl

[23] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-266 | DOI | MR | Zbl

[24] J. S. Hesthaven; C. Pagliantini; G. Rozza Reduced basis methods for time-dependent problems, Acta Numer., Volume 31 (2022), pp. 265-345 | DOI | MR | Zbl

[25] J. S. Hesthaven; G. Rozza; B. Stamm Certified reduced basis methods for parametrized partial differential equations, Springer, 2016 | DOI

[26] D. J. Knezevic; A. T. Patera A certified reduced basis method for the Fokker–Planck equation of dilute polymeric fluids: FENE dumbbells in extensional flow, SIAM J. Sci. Comput., Volume 32 (2010) no. 2, pp. 793-817 | DOI | MR | Zbl

[27] A. Kolmogoroff Über die beste Annaherung von Funktionen einer gegebenen Funktionenklasse, Ann. Math. (1936), pp. 107-110 | DOI | MR | Zbl

[28] J.-L. Lions; E. Magenes Problemes aux limites non homogenes. II, Ann. Inst. Fourier, Volume 11 (1961), pp. 137-178 | DOI | Numdam | MR

[29] Y. Maday; B. Stamm Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput., Volume 35 (2013) no. 6, p. A2417-A2441 | DOI | MR | Zbl

[30] R. C. Mittal; R. Jiwari Numerical solution of two-dimensional reaction–diffusion Brusselator system, Appl. Math. Comput., Volume 217 (2011) no. 12, pp. 5404-5415 | DOI | MR | Zbl

[31] C. Prud’Homme; V. Chabannes; V. Doyeux; M. Ismail; A. Samake; G. Pena Feel++: A computational framework for galerkin methods and advanced numerical methods, ESAIM: Proceedings, Volume 38, EDP Sciences (2012), pp. 429-455 | DOI | MR

[32] A. Quarteroni; A. Manzoni; F. Negri Reduced Basis Methods for Partial Differential Equations: an introduction, 92, Springer, 2015

[33] B. Streichenberger Approches multi-fidélités pour la simulation rapide d’écoulements d’air en milieu urbain, Ph. D. Thesis, Université Gustave Eiffel (2021)

[34] V. Thomée Galerkin finite element methods for parabolic problems, 25, Springer, 2007

[35] D. Xiao; F. Fang; C. Pain; G. Hu Non-intrusive reduced-order modelling of the Navier–Stokes equations based on RBF interpolation, Int. J. Numer. Methods Fluids, Volume 79 (2015) no. 11, pp. 580-595 | DOI | MR | Zbl

Cited by Sources: