A deterministic approximation method in shape optimization under random uncertainties
The SMAI journal of computational mathematics, Volume 1 (2015) , pp. 83-143.

This paper is concerned with the treatment of uncertainties in shape optimization. We consider uncertainties in the loadings, the material properties, the geometry and the vibration frequency, both in the parametric and geometric optimization setting. We minimize objective functions which are mean values, variances or failure probabilities of standard cost functions under random uncertainties. By assuming that the uncertainties are small and generated by a finite number N of random variables, and using first- or second-order Taylor expansions, we propose a deterministic approach to optimize approximate objective functions. The computational cost is similar to that of a multiple load problems where the number of loads is N. We demonstrate the effectiveness of our approach on various parametric and geometric optimization problems in two space dimensions.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Published online:
DOI: https://doi.org/10.5802/smai-jcm.5
Classification: 65C20,  65K10,  93C95
Keywords: Shape optimization, random uncertainties, Level Set method
@article{SMAI-JCM_2015__1__83_0,
     author = {Gr\'egoire Allaire and Charles Dapogny},
     title = {A deterministic approximation method in shape optimization under random uncertainties},
     journal = {The SMAI journal of computational mathematics},
     pages = {83--143},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {1},
     year = {2015},
     doi = {10.5802/smai-jcm.5},
     mrnumber = {3620371},
     zbl = {1416.74080},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.5/}
}
Grégoire Allaire; Charles Dapogny. A deterministic approximation method in shape optimization under random uncertainties. The SMAI journal of computational mathematics, Volume 1 (2015) , pp. 83-143. doi : 10.5802/smai-jcm.5. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.5/

[1] G. Allaire Conception optimale de structures, Mathématiques & Applications (Berlin) [Mathematics & Applications], Volume 58, Springer-Verlag, Berlin, 2007, xii+278 pages (With the collaboration of Marc Schoenauer (INRIA) in the writing of Chapter 8) | MR 2270119 | Zbl 1132.49033

[2] G. Allaire; C. Dapogny A deterministic approximation method in shape optimization under random uncertainties: supplementary material (Allaire-Dapogny-supp.pdf) | Zbl 1416.74080

[3] G. Allaire; C. Dapogny A linearized approach to worst-case design in parametric and geometric shape optimization, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 11, pp. 2199-2257 | Article | MR 3244780 | Zbl 1297.49075

[4] G. Allaire; F. Jouve A level-set method for vibration and multiple loads structural optimization, Comput. Methods Appl. Mech. Engrg., Volume 194 (2005) no. 30-33, pp. 3269-3290 | Article | MR 2146036 | Zbl 1091.74038

[5] G. Allaire; F. Jouve Minimum stress optimal design with the level set method, Engineering Analysis with Boundary Elements, Volume 32 (2008), pp. 909-918 | Article | Zbl 1244.74104

[6] G. Allaire; F. Jouve; A.-M. Toader Structural optimization using shape sensitivity analysis and a level-set method, J. Comput. Phys., Volume 194 (2004), pp. 363-393 | Article | Zbl 1136.74368

[7] S. Amstutz; M. Ciligot-Travain A notion of compliance robustness in topology optimization (2014) (accepted for publication in ESAIM: Control, Optimization and Calculus of Variations) | Zbl 1335.49069

[8] I. Babuška; F. Nobile; R. Tempone A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., Volume 45 (2007) no. 3, pp. 1005-1034 | Article | MR 2318799 | Zbl 1151.65008

[9] M. Bendsøe; O. Sigmund Topology optimization. Theory, methods and applications, Springer-Verlag, Berlin, 2003, xiv+370 pages | MR 2008524 | Zbl 1059.74001

[10] W. Betz; I. Papaioannou; D. Straub Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion, Comput. Methods Appl. Mech. Engrg., Volume 271 (2014), pp. 109-129 | Article | MR 3162666 | Zbl 1296.65191

[11] C. Bui; C. Dapogny; P. Frey An accurate anisotropic adaptation method for solving the level set advection equation, Internat. J. Numer. Methods Fluids, Volume 70 (2012) no. 7, pp. 899-922 | Article | MR 2983752 | Zbl 1412.65133

[12] J. Céa Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût, RAIRO Modél. Math. Anal. Numér., Volume 20 (1986) no. 3, pp. 371-402 | Article | Numdam | MR 862783 | Zbl 0604.49003

[13] S. Chen; W. Chen A new level-set based approach to shape and topology optimization under geometric uncertainty, Struct. Multidiscip. Optim., Volume 44 (2011) no. 1, pp. 1-18 | Article | MR 2806155 | Zbl 1274.49056

[14] S. Chen; W. Chen; S. Lee Level set based robust shape and topology optimization under random field uncertainties, Struct. Multidiscip. Optim., Volume 41 (2010) no. 4, pp. 507-524 | Article | MR 2601470 | Zbl 1274.74323

[15] A. Cherkaev; E. Cherkaev Principal compliance and robust optimal design, J. Elasticity, Volume 72 (2003) no. 1-3, pp. 71-98 | Article | MR 2064219 | Zbl 1079.74051

[16] A. Chkifa; A. Cohen; C. Schwab Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, J. Math. Pures Appl. (9), Volume 103 (2015) no. 2, pp. 400-428 | Article | MR 3298364 | Zbl 1327.65251

[17] S.-K. Choi; R Grandhi; R.A. Canfield Reliability-based Structural Design, Springer, 2007

[18] P.G. Ciarlet Mathematical elasticity. Vol. I: Three-Dimensional Elasticity, North-Holland Publishing Co., Amsterdam, 1988, xlii+451 pages | MR 936420

[19] S. Conti; H. Held; M. Pach; M. Rumpf; R. Schultz Shape optimization under uncertainty—a stochastic programming perspective, SIAM J. Optim., Volume 19 (2008) no. 4, pp. 1610-1632 | Article | MR 2486042 | Zbl 1176.49045

[20] M. Dambrine; C. Dapogny; H. Harbrecht Shape optimization for quadratic functionals and states with random right-hand sides, SIAM J. Control Optim., Volume 53 (2015) no. 5, pp. 3081-3103 | Article | MR 3400020 | Zbl 1326.49070

[21] M. Dambrine; H. Harbrecht; B. Puig Computing quantities of interest for random domains with second order shape sensitivity analysis, ESAIM: Math. Model. Numer. Anal., Volume 49 (2015), pp. 1285-1302 | Article | MR 3423225 | Zbl 1351.60062

[22] C. Dapogny Shape optimization, level set methods on unstructured meshes and mesh evolution (2013) (Ph. D. Thesis)

[23] C. Dapogny; P. Frey Computation of the signed distance function to a discrete contour on adapted triangulation, Calcolo, Volume 49 (2012) no. 3, pp. 193-219 | Article | MR 2957012 | Zbl 1258.65087

[24] F. de Gournay; G. Allaire; F. Jouve Shape and topology optimization of the robust compliance via the level set method, ESAIM Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 43-70 | Article | Numdam | MR 2375751 | Zbl 1245.49054

[25] M.C. Delfour; J.-P. Zolésio Shapes and geometries: Metrics, analysis, differential calculus, and optimization, Advances in Design and Control, Volume 22, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011, xxiv+622 pages | Article | MR 2731611 | Zbl 1251.49001

[26] P.D. Dunning; H.A. Kim Robust Topology Optimization: Minimization of Expected and Variance of Compliance, AIAA Journal, Volume 51 (2013), pp. 2656-2664 | Article

[27] X. Guo; W. Bai; W. Zhang Confidence extremal structural response analysis of truss structures under static load uncertainty via SDP relaxation, Computers and Structures, Volume 87 (2009), pp. 246-253 | Article

[28] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012), pp. 251-265 | Article | MR 3043640 | Zbl 1266.68090

[29] F. Hecht; A. Le Hyaric; O. Pironneau FreeFem++ version 2.15-1 (http://www.freefem.org/ff++/)

[30] A. Henrot; M. Pierre Variation et optimisation de formes, une analyse géométrique, Mathématiques & Applications (Berlin), Volume 48, Springer, Berlin, 2005, xii+334 pages | Article | MR 2512810 | Zbl 1098.49001

[31] B.S. Lazarov; M. Schevenels; O. Sigmund Topology optimization with geometric uncertainties by perturbation techniques, Int. J. Numer. Meth. Engng., Volume 90 (2012), pp. 1321-1336 | Article | Zbl 1242.74075

[32] M. Loève Probability theory. II, Graduate Texts in Mathematics, Volume 46, Springer-Verlag, 1977, xvi+413 pages | MR 0651018

[33] J. Martínez-Frutos; M. Kessler; F. Periago Robust optimal shape design for an elliptic PDE with uncertainty in its input data (2015) (submitted) | Article | Zbl 1323.49029

[34] K. Maute Topology optimization under uncertainty, Topology optimization in structural and continuum mechanics (CISM Courses and Lectures) Volume 549, Springer, Vienna, 2014, pp. 457-471 | Article | MR 3203948

[35] F. Murat; J. Simon Sur le contrôle par un domaine géométrique, Technical Report RR-76015, Laboratoire d’Analyse Numérique (1976)

[36] J. Nocedal; S.J. Wright Numerical optimization, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006, xxii+664 pages | MR 2244940 | Zbl 1104.65059

[37] S.J. Osher; J.A. Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., Volume 79 (1988) no. 1, pp. 12-49 | Article | MR 965860 | Zbl 0659.65132

[38] Y. Privat; E. Trélat; E. Zuazua Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., Volume 216 (2015) no. 3, pp. 921-981 | Article | MR 3325779 | Zbl 1319.35272

[39] G. Rozvany Structural design via optimality criteria, Kluwer Academic Publishers Group, Dordrecht, 1989, xxvi+463 pages | Article | MR 994180 | Zbl 0687.73079

[40] C. Schillings; S. Schmidt; V. Schulz Efficient shape optimization for certain and uncertain aerodynamic design, Comput. & Fluids, Volume 46 (2011), pp. 78-87 | Article | MR 2948982 | Zbl 05897524

[41] V. Schulz; C. Schillings Optimal Aerodynamic Design under Uncertainty, Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics, ed. B. Eisfeld et al (2013), pp. 297-338 | Article

[42] O. Sigmund On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach., Volume 25 (1997), pp. 493-524 | Article

[43] J. Simon Second variations for domain optimization problems, Control and estimation of distributed parameter systems (Vorau, 1988) (Internat. Ser. Numer. Math.) Volume 91, Birkhäuser, Basel, 1989, pp. 361-378 | MR 1033071 | Zbl 0691.49023

[44] J. Sokołowski; J.-P. Zolésio Introduction to shape optimization: Shape sensitivity analysis, Springer Series in Computational Mathematics, Volume 10, Springer-Verlag, Berlin, 1992, ii+250 pages | Article | MR 1215733 | Zbl 0761.73003

[45] M.Y. Wang; X. Wang; D. Guo A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003) no. 1-2, pp. 227-246 | Article | MR 1951408