We start from the splitting of the equations of single-fluid magnetohydrodynamics (MHD) into a magnetic induction part and a fluid part. We design novel numerical methods for the MHD system based on the coupling of Galerkin schemes for the electromagnetic fields via finite element exterior calculus (FEEC) with finite volume methods for the conservation laws of fluid mechanics. Using a vector potential based formulation, the magnetic induction problem is viewed as an instance of a generalized transient advection problem of differential forms. For the latter, we rely on an Eulerian method of lines with explicit Runge–Kutta timestepping and on structure preserving spatial upwind discretizations of the Lie derivative in the spirit of finite element exterior calculus. The balance laws for the fluid constitute a system of conservation laws with the magnetic induction field as a space and time dependent coefficient, supplied at every time step by the structure preserving discretization of the magnetic induction problem. We describe finite volume schemes based on approximate Riemann solvers adapted to accommodate the electromagnetic contributions to the momentum and energy conservation. A set of benchmark tests for the two-dimensional planar ideal MHD equations provide numerical evidence that the resulting lowest order coupled scheme has excellent conservation properties, is first order accurate for smooth solutions, conservative and stable.
DOI: 10.5802/smai-jcm.34
Keywords: Magnetohydrodynamics (MHD), discrete differential forms, Finite Element Exterior Calculus (FEEC), extrusion contraction, upwinding, extended Euler equations, Orszag-Tang vortex, rotor problem
Ralf Hiptmair 1; Cecilia Pagliantini 2
@article{SMAI-JCM_2018__4__225_0, author = {Ralf Hiptmair and Cecilia Pagliantini}, title = {Splitting-Based {Structure} {Preserving} {Discretizations} for {Magnetohydrodynamics}}, journal = {The SMAI Journal of computational mathematics}, pages = {225--257}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {4}, year = {2018}, doi = {10.5802/smai-jcm.34}, zbl = {1416.76343}, mrnumber = {3813097}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.34/} }
TY - JOUR AU - Ralf Hiptmair AU - Cecilia Pagliantini TI - Splitting-Based Structure Preserving Discretizations for Magnetohydrodynamics JO - The SMAI Journal of computational mathematics PY - 2018 SP - 225 EP - 257 VL - 4 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.34/ DO - 10.5802/smai-jcm.34 LA - en ID - SMAI-JCM_2018__4__225_0 ER -
%0 Journal Article %A Ralf Hiptmair %A Cecilia Pagliantini %T Splitting-Based Structure Preserving Discretizations for Magnetohydrodynamics %J The SMAI Journal of computational mathematics %D 2018 %P 225-257 %V 4 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.34/ %R 10.5802/smai-jcm.34 %G en %F SMAI-JCM_2018__4__225_0
Ralf Hiptmair; Cecilia Pagliantini. Splitting-Based Structure Preserving Discretizations for Magnetohydrodynamics. The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 225-257. doi : 10.5802/smai-jcm.34. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.34/
[1] Finite element differential forms on cubical meshes, Math. Comp., Volume 83 (2014) no. 288, pp. 1551-1570 | DOI | MR | Zbl
[2] Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numer. Math., Volume 129 (2015) no. 1, pp. 1-20 | DOI | MR | Zbl
[3] Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl
[4] Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR | Zbl
[5] Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics, The Astrophysical Journal Supplement Series, Volume 116 (1998) no. 1, pp. 133-153 | DOI
[6] Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, The Astrophysical Journal Supplement Series, Volume 151 (2004) no. 1, pp. 149-184 | DOI
[7] A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., Volume 149 (1999) no. 2, pp. 270-292 | DOI | MR | Zbl
[8] Extrusion, contraction: their discretization via Whitney forms, COMPEL, Volume 22 (2003) no. 3, pp. 470-480 | DOI | MR | Zbl
[9] An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., Volume 75 (1988) no. 2, pp. 400-422 | DOI | MR | Zbl
[10] The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978 | Zbl
[11] On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., Volume 25 (1988) no. 2, pp. 294-318 | DOI | MR | Zbl
[12] Stable upwind schemes for the magnetic induction equation, M2AN Math. Model. Numer. Anal., Volume 43 (2009) no. 5, pp. 825-852 | DOI | Numdam | MR | Zbl
[13] Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations, Commun. Comput. Phys., Volume 9 (2011) no. 2, pp. 324-362 | DOI | MR | Zbl
[14] Splitting based finite volume schemes for ideal MHD equations, J. Comput. Phys., Volume 228 (2009) no. 3, pp. 641-660 | DOI | MR | Zbl
[15] Principles of Magnetohydrodynamics, Cambridge University Press, 2004 | DOI
[16] Strong stability-preserving high-order time discretization methods, SIAM Rev., Volume 43 (2001) no. 1, pp. 89-112 | DOI | MR | Zbl
[17] Entropy-based nonlinear viscosity for Fourier approximations of conservation laws, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 13-14, pp. 801-806 | DOI | MR | Zbl
[18] Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., Volume 230 (2011) no. 11, pp. 4248-4267 | DOI | MR
[19] Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys., Volume 71 (1987) no. 2, pp. 231-303 | DOI | MR | Zbl
[20] On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., Volume 25 (1983) no. 1, pp. 35-61 | DOI | MR | Zbl
[21] Extrusion contraction upwind schemes for convection-diffusion problems (2008) (SAM Report 2008-30, Seminar for Applied Mathematics, ETH Zürich)
[22] Convergence of lowest order semi-Lagrangian schemes, Found. Comput. Math., Volume 13 (2013) no. 2, pp. 187-220 | DOI | MR | Zbl
[23] Stabilized Galerkin for transient advection of differential forms, Discrete Contin. Dyn. Syst. Ser. S, Volume 9 (2016) no. 1, pp. 185-214 | MR | Zbl
[24] Canonical construction of finite elements, Math. Comp., Volume 68 (1999) no. 228, pp. 1325-1346 | DOI | MR | Zbl
[25] Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl
[26] Stable finite element methods preserving exactly for MHD models, Numer. Math., Volume 135 (2017) no. 2, pp. 371-396 | DOI | MR | Zbl
[27] FISH: a three-dimensional parallel magnetohydrodynamics code for astrophysical applications, The Astrophysical Journal Supplement Series, Volume 195 (2011) no. 20, pp. 1-16
[28] Semi-Godunov schemes for multiphase flows in porous media, Appl. Numer. Math., Volume 59 (2009) no. 9, pp. 2322-2336 | DOI | MR | Zbl
[29] A three-dimensional adaptive multifluid MHD model of the heliosphere, University of Michigan, Ann Arbor, MI (1998) (Ph. D. Thesis)
[30] A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., Volume 208 (2005) no. 1, pp. 315-344 | DOI | MR | Zbl
[31] Discrete Lie advection of differential forms, Found. Comput. Math., Volume 11 (2011) no. 2, pp. 131-149 | DOI | MR | Zbl
[32] Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., Volume 90 (1979) no. 1, pp. 129-143 | DOI
[33] Computational Magnetohydrodynamics with Discrete Differential Forms, Dis. no 23781, ETH Zürich (2016) (Ph. D. Thesis)
[34] A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, Berlin, 1977 | Zbl
[35] Robust numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin, 2008
[36] Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., Volume 96 (2004) no. 4, pp. 771-800 | DOI | MR | Zbl
[37] Efficient implementation of essentially nonoscillatory shock-capturing schemes. II, J. Comput. Phys., Volume 83 (1989) no. 1, pp. 32-78 | DOI | MR | Zbl
[38] A finite element approximation corresponding to the upwind finite differencing, Mem. Numer. Math., Volume 4 (1977), pp. 47-63 | MR | Zbl
[39] Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, Volume 4 (1994) no. 1, pp. 25-34 | DOI | Zbl
[40] The constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., Volume 161 (2000) no. 2, pp. 605-652 | DOI | MR | Zbl
[41] Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, Volume 14 (1966) no. 3, p. 302-30 | DOI | Zbl
Cited by Sources: