Multiresolution greedy algorithm dedicated to reflective tomography
The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 259-296.

Reflective tomography recovers the surfaces of a scene to be imaged, from optical images: a tomographic algorithm computes a full volumic reconstruction and then the surfaces are extracted from this reconstruction. For better performance, we would like to avoid computing accurately the full reconstruction, and we want to focus computations on the sought surfaces. For that purpose we propose an iterative multiresolution process. The initialization computes a coarse reconstruction, and the iterations refines it. To identify the voxels to be refined, we take advantage of the asymptotic behaviour of the reconstruction, with respect to its cut-off frequency: it discriminates the surfaces to be extracted. By the way the proposed algorithm is greedy: each iteration maximizes the accumulated intensity of the selected voxels, with prescribed volume. The combination of the complexity analysis and the numerical results shows that this novel approach succeeds in reconstructing surfaces and is relatively efficient compared with the standard method. These works pave the way towards accelerated algorithms in reflective tomography. They can be extended to a general class of problems concerning the determination of asymptotically discriminated sets, what is related to the computation of singular support of distributions.

Published online:
DOI: 10.5802/smai-jcm.35
Classification: 78A97, 94A12, 65B99, 65Y20
Keywords: Computational optics, reconstruction, acceleration, complexity
Jean-Baptiste Bellet 1

1 Université de Lorraine, CNRS, IECL, F-57000 Metz, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Jean-Baptiste Bellet},
     title = {Multiresolution greedy algorithm dedicated to reflective tomography},
     journal = {The SMAI Journal of computational mathematics},
     pages = {259--296},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.35},
     zbl = {1416.78009},
     mrnumber = {3867963},
     language = {en},
     url = {}
AU  - Jean-Baptiste Bellet
TI  - Multiresolution greedy algorithm dedicated to reflective tomography
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 259
EP  - 296
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  -
DO  - 10.5802/smai-jcm.35
LA  - en
ID  - SMAI-JCM_2018__4__259_0
ER  - 
%0 Journal Article
%A Jean-Baptiste Bellet
%T Multiresolution greedy algorithm dedicated to reflective tomography
%J The SMAI Journal of computational mathematics
%D 2018
%P 259-296
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%R 10.5802/smai-jcm.35
%G en
%F SMAI-JCM_2018__4__259_0
Jean-Baptiste Bellet. Multiresolution greedy algorithm dedicated to reflective tomography. The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 259-296. doi : 10.5802/smai-jcm.35.

[1] Jean-Baptiste Bellet Analyse asymptotique et géométrique de la tomographie réflective (2017) (<hal-01571707>)

[2] Jean-Baptiste Bellet; Gérard Berginc Reflective Filtered Backprojection, Comptes rendus - Mathématique, Volume 354 (2016), pp. 960-964 | DOI | MR | Zbl

[3] I. Berechet; G. Berginc, Optical Complex Systems: OCS11, 81720Z (Proc. of SPIE), Volume 8172 (2011)

[4] Stefan Berechet; Ion Berechet; Jean-Baptiste Bellet; Gérard Berginc Procédé de discrimination et d’identification par imagerie 3D d’objets d’une scène, Patent WO2016097168 A1, 2015

[5] G. Berginc; J.-B. Bellet; I. Berechet; S. Berechet, Proc. SPIE, Volume 9961 (2016), 99610Q pages

[6] G. Berginc; M. Jouffroy, Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, Volume 2 (2009), pp. 440-444

[7] G. Berginc; M. Jouffroy Simulation of 3D laser imaging, PIERS Online, Volume 6 (2010) no. 5, pp. 415-419 | DOI

[8] Gérard Berginc Scattering models for 1-D–2-D–3-D laser imagery, Optical Engineering, Volume 56 (2016) no. 3, 031207 pages | DOI

[9] David T. Gering; W.M. Wells, Multi-View Modeling and Analysis of Visual Scenes, 1999.(MVIEW’99) Proceedings. IEEE Workshop on (1999), pp. 11-18 | DOI

[10] Henri Gouraud Continuous shading of curved surfaces, IEEE transactions on computers, Volume 100 (1971) no. 6, pp. 623-629 | DOI | Zbl

[11] Markus Henriksson; Tomas Olofsson; Christina Grönwall; Carl Brännlund; Lars Sjöqvist, Proc. SPIE, Volume 8542 (2012), 85420E pages

[12] Berthold Horn Robot vision, MIT press, 1986

[13] F.K. Knight; S.R. Kulkarni; R.M. Marino; J.K. Parker Tomographic Techniques Applied to Laser Radar Reflective Measurements, Lincoln Laboratory Journal, Volume 2 (1989) no. 2, pp. 143-160

[14] Aldo Laurentini The visual hull concept for silhouette-based image understanding, IEEE Transactions on pattern analysis and machine intelligence, Volume 16 (1994) no. 2, pp. 150-162 | DOI

[15] Charles Soussen; Jérôme Idier, IEEE International Conference on Image Processing, Volume 3 (2005), pp. 744-747

[16] Greg Turk; Marc Levoy, Proceedings of the 21st annual conference on Computer graphics and interactive techniques (1994), pp. 311-318

[17] J.W. Wallis; T.R. Miller Three-Dimensional Display in Nuclear Medicine and Radiology, The Journal of Nuclear Medicine (1991), pp. 534-546

Cited by Sources: