Recent advances in numerical methods for solving the wave equation in the context of seismic depth imaging
The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 47-65.

In this paper, we present the recent advances in using discontinuous Galerkin method for solving wave equation in the context of seismic depth imaging and full wave inversion. We show some examples and the way forward to some advanced schemes coupling different numerical approximations we believe will provide the necessary tools for building the next seismic depth imaging generation codes for TOTAL Exploration&Production. This contribution is linked to the mini symposium (MS) Mathematical tools in energy industry (organized at Arcachon during the 9th International conference Curves and Surfaces).

Published online:
DOI: 10.5802/smai-jcm.51
Keywords: Numerical analysis, approximation, energy, HPC, finite elements method, Discontinuous Galerkin method, seismic depth imaging.

Henri Calandra 1; Zoé Lambert 2; Christian Gout 3; Andreas Atle 1; Marie Bonnasse-Gahot 1; Julien Diaz 4; Simon Ettouati 1

1 TOTAL SA, 64000 Pau, France
2 LMI, Normandie Univ., INSA Rouen, 76000 Rouen, France
3 LMI, Normandie Univ., INSA Rouen, 76000 Rouen, France, and INRIA Bordeaux Sud Ouest - Magique3D, 64000 Pau, France
4 INRIA Bordeaux Sud Ouest - Magique3D, 64000 Pau, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2019__S5__47_0,
     author = {Henri Calandra and Zo\'e Lambert and Christian Gout and Andreas Atle and Marie Bonnasse-Gahot and Julien Diaz and Simon Ettouati},
     title = {Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging},
     journal = {The SMAI Journal of computational mathematics},
     pages = {47--65},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.51},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.51/}
}
TY  - JOUR
AU  - Henri Calandra
AU  - Zoé Lambert
AU  - Christian Gout
AU  - Andreas Atle
AU  - Marie Bonnasse-Gahot
AU  - Julien Diaz
AU  - Simon Ettouati
TI  - Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 47
EP  - 65
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.51/
DO  - 10.5802/smai-jcm.51
LA  - en
ID  - SMAI-JCM_2019__S5__47_0
ER  - 
%0 Journal Article
%A Henri Calandra
%A Zoé Lambert
%A Christian Gout
%A Andreas Atle
%A Marie Bonnasse-Gahot
%A Julien Diaz
%A Simon Ettouati
%T Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging
%J The SMAI Journal of computational mathematics
%D 2019
%P 47-65
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.51/
%R 10.5802/smai-jcm.51
%G en
%F SMAI-JCM_2019__S5__47_0
Henri Calandra; Zoé Lambert; Christian Gout; Andreas Atle; Marie Bonnasse-Gahot; Julien Diaz; Simon Ettouati. Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging. The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 47-65. doi : 10.5802/smai-jcm.51. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.51/

[1] H. Barucq; T. Chaumont Frelet; C. Gout Stability analysis of heterogeous Helmholtz problems and finite element solution based on propagation media approximation, Math. Comput., Volume 86 (2017) no. 307, pp. 2129-2157 | DOI | Zbl

[2] E. Baysal; D. D. Kosloff; W. C. Sherwood Reverse time migration, Geophysics, Volume 48 (1983) no. 11, pp. 1514-1524 | DOI

[3] M. Bonnasse-Gahot Simulation de la propagation d’ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues, Université de Nice - Sophia Antipolis - UFR Science, École Doctorale des Sciences Fondamentales et Appliqueées - ED 364 (2015) (Ph. D. Thesis)

[4] J. Chan; T. Warburton GPU-Accelerated Bernstein-Bézier Discontinuous Galerkin Methods for Wave Problems, SIAM J. Sci. Comput., Volume 39 (2017) no. 2, pp. 628-654 | DOI | Zbl

[5] J. F. Claerbout Toward a unified theory of reflector mapping, Geophysics, Volume 36 (1971) no. 3, pp. 467-481 | DOI

[6] M. Dablain The application of high-order differencing to the scalar wave equation, Geophysics, Volume 51 (1986) no. 1, pp. 54-66 | DOI

[7] M. Dumbser; M. Käser An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II The three-dimensional isotropic case, Geophys. J. Int., Volume 167 (2006), pp. 319-336 | DOI

[8] V. Etienne; E. Chaljub; J. Virieux; N. Glinsky An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophys. J. Int., Volume 183 (2010) no. 2, pp. 941-962 | DOI

[9] C. Gout; Z. Lambert; D. Apprato Data approximation : mathematical modelling and numerical simulations, EDP Sciences; INSA Rouen Normandie, 2019, 168 pages

[10] R. W. Graves Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., Volume 86 (1996) no. 4, pp. 1091-1106 | MR

[11] J. Hesthaven; T. Warburton Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008 | Zbl

[12] M. Käser; M. Dumbser An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophys. J. Int., Volume 166 (2006) no. 2, pp. 855-877 | DOI

[13] K. R. Kelly; R. W. Ward; Sven Treitel; R. M. Alford Synthetic seismograms: A finite-difference approach, Geophysics, Volume 41 (1976), pp. 2-27 | DOI

[14] A. Klöckner High-Performance High-Order Simulation of Wave and Plasma Phenomena, Dipl.-Math. techn., Universität Karlsruhe (TH), Karlsruhe, Germany (2005) (Ph. D. Thesis)

[15] D. Komatitsch; J. Tromp Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., Volume 139 (1999) no. 3, pp. 806-822 | DOI

[16] K. Marfurt Accuracy of finite-difference and finite-elements modeling of the scalar and elastic wave equation, Geophysics, Volume 49 (1984), pp. 533-549 | DOI

[17] B. Riviere Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, 2008 | Zbl

[18] J. Virieux P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, Volume 51 (1986), pp. 889-901 | DOI

[19] J. Virieux; V. Etienne; V. Cruz-Atienza Modelling Seismic Wave Propagation for Geophysical Imaging, Seismic Waves – Research and Analysis, IntechOpen, 2012, pp. 253-304 | DOI

[20] J. Virieux; S. Operto An overview of full-waveform inversion in exploration geophysics, Geophysics, Volume 74 (2009) no. 6, pp. 1-26 | DOI

Cited by Sources: