Electrostatic Force Computation with Boundary Element Methods
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 49-74.

Boundary element methods are a well-established technique for solving linear boundary value problems for electrostatic potentials. In this context we present a novel way to approximate the forces exerted by electrostatic fields on conducting objects. Like the standard post-processing technique employing surface integrals derived from the Maxwell stress tensor the new approach solely relies on surface integrals, but, compared to the former, offers better accuracy and faster convergence.

The new formulas arise from the interpretation of forces fields as shape derivatives, in the spirit of the virtual work principle, combined with the adjoint approach from shape optimization. In contrast to standard formulas, they meet the continuity and smoothing requirements of abstract duality arguments, which supply a rigorous underpinning for their observed superior performance.

Published online:
DOI: 10.5802/smai-jcm.79
Classification: 65N38, 78M15, 45A05
Keywords: Electrostatics, electromagnetic forces, shape derivative, boundary integral equations, boundary element method

Piyush Panchal 1; Ralf Hiptmair 1

1 SAM, D-MATH, ETH Zurich, CH-8092 Zürich
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2022__8__49_0,
     author = {Piyush Panchal and Ralf Hiptmair},
     title = {Electrostatic {Force} {Computation} with {Boundary} {Element} {Methods}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {49--74},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.79},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.79/}
}
TY  - JOUR
AU  - Piyush Panchal
AU  - Ralf Hiptmair
TI  - Electrostatic Force Computation with Boundary Element Methods
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 49
EP  - 74
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.79/
DO  - 10.5802/smai-jcm.79
LA  - en
ID  - SMAI-JCM_2022__8__49_0
ER  - 
%0 Journal Article
%A Piyush Panchal
%A Ralf Hiptmair
%T Electrostatic Force Computation with Boundary Element Methods
%J The SMAI Journal of computational mathematics
%D 2022
%P 49-74
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.79/
%R 10.5802/smai-jcm.79
%G en
%F SMAI-JCM_2022__8__49_0
Piyush Panchal; Ralf Hiptmair. Electrostatic Force Computation with Boundary Element Methods. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 49-74. doi : 10.5802/smai-jcm.79. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.79/

[1] R. Becker; R. Rannacher An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., Volume 10 (2001), pp. 1-102 | DOI | MR | Zbl

[2] Timo Betcke; Alexander Haberl; Dirk Praetorius Adaptive boundary element methods for the computation of the electrostatic capacity on complex polyhedra, J. Comput. Phys., Volume 397 (2019), 108837, 19 pages | DOI | MR | Zbl

[3] A. Bossavit Forces in magnetostatics and their computation, J. Appl. Phys., Volume 67 (1990) no. 9, pp. 5812-5814 | DOI

[4] Anthony Carpentier; Nicolas Galopin; Olivier Chadebec; Gérard Meunier; Christophe Guérin Application of the virtual work principle to compute magnetic forces with a volume integral method, Int. J. Numer. Model., Volume 27 (2014) no. 3, pp. 418-432 | DOI

[5] Philippe G. Ciarlet Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, 2013, xiv+832 pages

[6] J. L. Coulomb A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness, IEEE Trans. Magnetics, Volume 19 (1983) no. 6, pp. 2514-2519 | DOI

[7] Monique Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, 1341, Springer, 1988 | DOI

[8] Georges de Rham Differentiable manifolds. Forms, currents, harmonic forms, Grundlehren der Mathematischen Wissenschaften, 266, Springer, 1984, x+167 pages (Translated from the French by F. R. Smith, With an introduction by S. S. Chern) | DOI

[9] M. C. Delfour; J.-P. Zolésio Shapes and geometries. Metrics, analysis, differential calculus, and optimization, Advances in Design and Control, 22, Society for Industrial and Applied Mathematics, 2011, xxiv+622 pages

[10] Heiko Gimperlein; Fabian Meyer; Ceyhun Özdemir; David Stark; Ernst P. Stephan Boundary elements with mesh refinements for the wave equation, Numer. Math., Volume 139 (2018) no. 4, pp. 867-912 | DOI | MR | Zbl

[11] Wei Gong; Shengfeng Zhu On Discrete Shape Gradients of Boundary Type for PDE-constrained Shape Optimization, SIAM J. Numer. Anal., Volume 59 (2021) no. 3, pp. 1510-1541 | DOI | MR | Zbl

[12] P. Grisvard Elliptic Problems in Nonsmooth Domains, Pitman, 1985 | DOI

[13] Joachim Gwinner; Ernst P. Stephan Advanced boundary element methods, Springer Series in Computational Mathematics, 52, Springer, 2018 | DOI

[14] W. Hackbusch Integral equations. Theory and numerical treatment., International Series of Numerical Mathematics, 120, Birkhäuser, 1995 | DOI

[15] François Henrotte; G. Deliege; Kay Hameyer The eggshell approach for the computation of electromagnetic forces in 2D and 3D, COMPEL, Volume 23 (2004) no. 4, pp. 996-1005 | DOI | MR | Zbl

[16] François Henrotte; Kay Hameyer Computation of electromagnetic force densities: Maxwell stress tensor vs. virtual work principle, J. Comput. Appl. Math., Volume 168 (2004) no. 1-2, pp. 235-243 | DOI | MR | Zbl

[17] François Henrotte; Kay Hameyer A Theory for Electromagnetic Force Formulas in Continuous Media, IEEE Trans. Magnetics, Volume 43 (2007) no. 4, pp. 1445-1448 | DOI

[18] Norbert Heuer; Ernst P. Stephan The hp-Version of the Boundary Element Method on Polygons, J. Integral Equations Appl., Volume 8 (1996) no. 2, pp. 173-212 | DOI | MR

[19] M. Hinze; R. Pinnau; M. Ulbrich; S. Ulbrich Optimization with PDE constraints, Mathematical Modelling: Theory and Applications, 23, Springer, 2009, xii+270 pages

[20] Ralf Hiptmair; Jingzhi Li Shape derivatives in differential forms I: an intrinsic perspective, Ann. Mat. Pura Appl., Volume 192 (2013) no. 6, pp. 1077-1098 | DOI | MR | Zbl

[21] Ralf Hiptmair; A. Paganini; S. Sargheini Comparison of approximate shape gradients, BIT Numer. Math., Volume 55 (2014), pp. 459-485 | DOI | MR | Zbl

[22] J. D. Jackson Classical electrodynamics, John Wiley & Sons, 1998

[23] Matthias Maischak; Ernst P. Stephan The hp-version of the boundary element method in 3 : The basic approximation results, Math. Methods Appl. Sci., Volume 20 (1997), pp. 461-476 | DOI | MR

[24] S. McFee; J. P. Webb; D. A. Lowther A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics, IEEE Trans. Magnetics, Volume 24 (1988) no. 1, pp. 439-442 | DOI

[25] W. McLean Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000

[26] J.-C. Nédélec Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 44, Springer, 2001 | DOI

[27] F. H. Read Improved Extrapolation Technique in the Boundary Element Method to Find the Capacitances of the Unit Square and Cube, J. Comput. Phys., Volume 133 (1997) no. 1, pp. 1-5 | DOI | Zbl

[28] S. Sauter; C. Schwab Boundary Element Methods, Springer Series in Computational Mathematics, 39, Springer, 2010

[29] J. Sokolowski; J.-P. Zolésio Introduction to shape optimization, Springer Series in Computational Mathematics, 16, Springer, 1992 | DOI

[30] Olaf Steinbach Numerical approximation methods for elliptic boundary value problems, Springer, 2008, xii+386 pages | DOI

[31] Ernst P. Stephan The hp-version of BEM – Fast convergence, adaptivity and efficient preconditioning, J. Comput. Math., Volume 27 (2009) no. 2-3, pp. 348-359 | MR | Zbl

Cited by Sources: