Let denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let stand for a random variable with values in such that one is able to simulate, at least approximately, according to the restriction of the law of to any subset of . For example, thanks to Markov chain Monte Carlo techniques, this is always possible when admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold such that the failure probability may be very low, our goal is to estimate the latter with a minimal number of calls to . In this aim, building on Cohen et al. [9], we propose a recursive and (in a certain sens) optimal algorithm that selects on the fly areas of interest and estimates their respective probabilities.
Keywords: Sequential design, Probability of failure, Sequential Monte Carlo, Tree based algorithms, High dimension
Lucie Bernard 1; Albert Cohen 2; Arnaud Guyader 3; Florent Malrieu 1
@article{SMAI-JCM_2022__8__75_0, author = {Lucie Bernard and Albert Cohen and Arnaud Guyader and Florent Malrieu}, title = {Recursive {Estimation} of a {Failure} {Probability} for a {Lipschitz} {Function}}, journal = {The SMAI Journal of computational mathematics}, pages = {75--97}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {8}, year = {2022}, doi = {10.5802/smai-jcm.80}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.80/} }
TY - JOUR AU - Lucie Bernard AU - Albert Cohen AU - Arnaud Guyader AU - Florent Malrieu TI - Recursive Estimation of a Failure Probability for a Lipschitz Function JO - The SMAI Journal of computational mathematics PY - 2022 SP - 75 EP - 97 VL - 8 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.80/ DO - 10.5802/smai-jcm.80 LA - en ID - SMAI-JCM_2022__8__75_0 ER -
%0 Journal Article %A Lucie Bernard %A Albert Cohen %A Arnaud Guyader %A Florent Malrieu %T Recursive Estimation of a Failure Probability for a Lipschitz Function %J The SMAI Journal of computational mathematics %D 2022 %P 75-97 %V 8 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.80/ %R 10.5802/smai-jcm.80 %G en %F SMAI-JCM_2022__8__75_0
Lucie Bernard; Albert Cohen; Arnaud Guyader; Florent Malrieu. Recursive Estimation of a Failure Probability for a Lipschitz Function. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 75-97. doi : 10.5802/smai-jcm.80. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.80/
[1] Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics, Volume 16 (2001) no. 4, pp. 263-277 | DOI
[2] Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis, Journal of Engineering Mechanics, Volume 129 (2003) no. 8, pp. 901-917 | DOI
[3] Sequential design of computer experiments for the estimation of a probability of failure, Stat. Comput., Volume 22 (2012) no. 3, pp. 773-793 | DOI | MR
[4] Bayesian Subset Simulation, SIAM/ASA J. Uncertain. Quantif., Volume 5 (2017) no. 1, pp. 762-786 | DOI | MR | Zbl
[5] Introduction to rare event simulation, Springer Series in Statistics, Springer, 2004, xii+260 pages | DOI | MR
[6] Sequential Monte Carlo for rare event estimation, Stat. Comput., Volume 22 (2012) no. 3, pp. 795-808 | DOI | MR | Zbl
[7] Fluctuation analysis of adaptive multilevel splitting, Ann. Appl. Probab., Volume 26 (2016) no. 6, pp. 3319-3380 | DOI | MR | Zbl
[8] Adaptive multilevel splitting: Historical perspective and recent results, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 29 (2019) no. 4, p. 043108 | DOI | MR | Zbl
[9] Finding the minimum of a function, Methods Appl. Anal., Volume 20 (2013) no. 4, pp. 365-381 | DOI | MR
[10] Structural reliability methods, 178, Wiley New York, 1996
[11] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992, viii+268 pages | MR | Zbl
[12] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities, Appl. Math. Optim., Volume 64 (2011), pp. 171-196 | DOI | MR | Zbl
[13] An efficient sampling method for probability of failure calculation, Structural Safety, Volume 3 (1986) no. 2, pp. 109-115 | DOI
[14] Estimation of particle transmission by random sampling, National Bureau of Standards Appl. Math. Series, Volume 12 (1951), pp. 27-30
[15] Arbres et processus de Galton-Watson, Ann. Inst. Henri Poincaré, Volume 22 (1986) no. 2, pp. 199-207 | Numdam | MR | Zbl
[16] Gaussian processes for machine learning, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, 2006, xviii+248 pages | MR
[17] Polynomial-chaos-based Kriging, Int. J. Uncertain. Quantif., Volume 5 (2015) no. 2, pp. 171-193 | DOI | MR
[18] Markov chains for exploring posterior distributions, Ann. Stat., Volume 22 (1994) no. 4, pp. 1701-1762 (With discussion and a rejoinder by the author) | DOI | MR | Zbl
Cited by Sources: