Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 99-124.

In this paper, we investigate the effect of the space and time discretisation on the convergence properties of Schwarz Waveform Relaxation (SWR) algorithms. We consider a reaction-diffusion problem with discontinuous coefficients discretised on two non-overlapping domains with several numerical schemes (in space and time). A methodology to determine the rate of convergence of the classical SWR method with standard interface conditions (Dirichlet-Neumann or Robin-Robin) accounting for discretisation errors is presented. We discuss how such convergence rates differ from the ones derived at a continuous level (i.e. assuming an exact discrete representation of the continuous problem). In this work we consider a second-order finite difference scheme and a finite volume scheme based on quadratic spline reconstruction in space, combined with either a simple backward Euler scheme or a two-step “Padé” scheme (resembling a Diagonally Implicit Runge Kutta scheme) in time. We prove those combinations of space-time schemes to be unconditionally stable on bounded domains. We illustrate the relevance of our analysis with specifically designed numerical experiments.

Published online:
DOI: 10.5802/smai-jcm.81
Classification: 65B99, 65L12, 65M12
Keywords: Schwarz methods, Waveform relaxation, Semi-discrete

Simon Clement 1; Florian Lemarié 1; Eric Blayo 1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2022__8__99_0,
     author = {Simon Clement and Florian Lemari\'e and Eric Blayo},
     title = {Discrete analysis of {Schwarz} waveform relaxation for a diffusion reaction problem with discontinuous coefficients},
     journal = {The SMAI Journal of computational mathematics},
     pages = {99--124},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.81},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/}
}
TY  - JOUR
AU  - Simon Clement
AU  - Florian Lemarié
AU  - Eric Blayo
TI  - Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 99
EP  - 124
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/
DO  - 10.5802/smai-jcm.81
LA  - en
ID  - SMAI-JCM_2022__8__99_0
ER  - 
%0 Journal Article
%A Simon Clement
%A Florian Lemarié
%A Eric Blayo
%T Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients
%J The SMAI Journal of computational mathematics
%D 2022
%P 99-124
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/
%R 10.5802/smai-jcm.81
%G en
%F SMAI-JCM_2022__8__99_0
Simon Clement; Florian Lemarié; Eric Blayo. Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 99-124. doi : 10.5802/smai-jcm.81. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/

[1] P. Azimzadeh; P. A. Forsyth Weakly Chained Matrices, Policy Iteration, and Impulse Control, SIAM J. Numer. Anal., Volume 54 (2016) no. 3, pp. 1341-1364 | DOI | MR | Zbl

[2] M. D. Al-Khaleel; S.-L. Wu Quasi-overlapping Semi-discrete Schwarz Waveform Relaxation Algorithms: The Hyperbolic Problem, Comput. Methods Appl. Math., Volume 20 (2020) no. 3, pp. 397-417 | DOI | MR | Zbl

[3] R. Alexander Diagonally Implicit Runge–Kutta Methods for Stiff O.D.E.’s, SIAM J. Numer. Anal., Volume 14 (1977) no. 6, pp. 1006-1021 | DOI | MR | Zbl

[4] N. F. Britton et al. Reaction-diffusion equations and their applications to biology., Academic Press Inc., 1986 | MR

[5] P.-M. Berthe Méthodes de décomposition de domaine de type relaxation d’ondes optimisées pour l’équation de convection-diffusion instationnaire discrétisée par volumes finis, Ph. D. Thesis, Paris 13 (2013) http://www.theses.fr/2013pa132055 (Thèse de doctorat dirigée par Omnes, P. et Japhet, C. Mathématiques appliquées Paris 13 2013)

[6] P.-M. Berthe; C. Japhet; P. Omnes Space–Time Domain Decomposition with Finite Volumes for Porous Media Applications, Domain Decomposition Methods in Science and Engineering XXI, Springer (2014), pp. 567-575 | DOI | Zbl

[7] R. J. Beerends; H. G. ter Morsche; J. C. van den Berg; E. M. van de Vrie Fourier and Laplace Transforms, Cambridge University Press, 2003 | DOI

[8] F. Caetano; M. J. Gander; L. Halpern; J. Szeftel Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations, Netw. Heterog. Media, Volume 5 (2010) no. 3, pp. 487-505 | DOI | MR | Zbl

[9] Simon Clement Code for Discrete analysis of SWR for a diffusion reaction problem with discontinuous coefficients, 2022 (https://zenodo.org/record/6324930) | DOI

[10] M. J. Gander A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl., Volume 6 (1999) no. 2, pp. 125-145 | DOI | MR | Zbl

[11] M. J. Gander; L. Halpern Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM J. Numer. Anal., Volume 45 (2007) no. 2, pp. 666-697 | DOI | MR | Zbl

[12] M. J. Gander; L. Halpern; F. Hubert; S. Krell Optimized Overlapping DDFV Schwarz Algorithms, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Springer (2020), pp. 365-373 | DOI | Zbl

[13] M. J. Gander; L. Halpern; M. Kern A Schwarz Waveform Relaxation Method for Advection—Diffusion—Reaction Problems with Discontinuous Coefficients and Non-matching Grids, Domain Decomposition Methods in Science and Engineering XVI, Springer (2007), pp. 283-290 | DOI

[14] M. J. Gander; F. Hubert; S. Krell Optimized Schwarz Algorithms in the Framework of DDFV Schemes, Domain Decomposition Methods in Science and Engineering XXI, Springer (2014), pp. 457-466 | DOI | Zbl

[15] M. J. Gander; L. Halpern; F. Nataf Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., Volume 41 (2003) no. 5, pp. 1643-1681 | DOI | MR | Zbl

[16] M. J. Gander; F. Kwok; B. C. Mandal Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains, BIT Numer. Math., Volume 61 (2021) no. 1, pp. 173-207 | DOI | MR | Zbl

[17] R. D. Haynes; K. Mohammad Fully Discrete Schwarz Waveform Relaxation on Two Bounded Overlapping Subdomains, Domain Decomposition Methods in Science and Engineering XXV, Springer (2020), pp. 159-166 | DOI

[18] M. H. Kobayashi On a Class of Padé Finite Volume Methods, J. Comput. Phys., Volume 156 (1999) no. 1, pp. 137-180 | DOI | MR | Zbl

[19] F. Lemarié; L. Debreu; G. Madec; J. Demange; J. M. Molines; M. Honnorat Stability constraints for oceanic numerical models: implications for the formulation of time and space discretizations, Ocean Modelling, Volume 92 (2015), pp. 124-148 | DOI

[20] F. Lemarié Algorithmes de Schwarz et couplage océan-atmosphère, Theses, Université Joseph-Fourier - Grenoble I (2008) https://tel.archives-ouvertes.fr/tel-00343501

[21] A. Monge; P. Birken A Multirate Neumann–Neumann Waveform Relaxation Method for Heterogeneous Coupled Heat Equations, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. S86-S105 | DOI | MR | Zbl

[22] G. Manfredi; M. Ottaviani Finite-difference schemes for the diffusion equation, Dynamical Systems, Plasmas and Gravitation, Springer (1999), pp. 82-92 | Zbl

[23] F. Nataf Recent Developments on Optimized Schwarz Methods, Domain Decomposition Methods in Science and Engineering XVI, Springer (2007), pp. 115-125 | DOI | MR

[24] E. Nourtier-Mazauric; E. Blayo Towards efficient interface conditions for a Schwarz domain decomposition algorithm for an advection equation with biharmonic diffusion, Appl. Numer. Math., Volume 60 (2010) no. 1, pp. 83-93 https://www.sciencedirect.com/science/article/pii/s0168927409001652 | DOI | MR | Zbl

[25] A. F. Shchepetkin An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling, Ocean Modelling, Volume 91 (2015), pp. 38-69 https://www.sciencedirect.com/science/article/pii/s1463500315000530 | DOI

[26] J. Smoller Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften, 258, Springer, 1983 | DOI | Zbl

[27] S. Thery; C. Pelletier; F. Lemarié; E. Blayo Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numer. Algorithms (2021) | DOI

[28] S.-L. Wu; M. D. Al-Khaleel Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations, BIT Numer. Math., Volume 54 (2014) no. 3, pp. 831-866 | MR | Zbl

[29] S.-L. Wu; M. D. Al-Khaleel Optimized waveform relaxation methods for RC circuits: discrete case, ESAIM: M2AN, Volume 51 (2017) no. 1, pp. 209-223 | DOI | MR | Zbl

[30] N. Wood; M. Diamantakis; A. Staniforth A monotonically-damping second-order-accurate unconditionally-stable numerical scheme for diffusion, Quarterly Journal of the Royal Meteorological Society, Volume 133 (2007) no. 627, pp. 1559-1573 | arXiv | DOI

[31] A. Zisowsky; M. Ehrhardt Discrete transparent boundary conditions for parabolic systems, Math. Comput. Modelling, Volume 43 (2006) no. 3, pp. 294-309 | DOI | MR | Zbl

Cited by Sources: