Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 125-160.

The Deferred Correction (DeC) methods combined with the residual distribution (RD) approach allow the construction of high order continuous Galerkin (cG) schemes avoiding the inversion of the mass matrix. With the application of entropy correction functions we can even obtain entropy conservative/dissipative spatial discretizations in this context. To handle entropy production in time, a relaxation approach has been suggested by Ketcheson. The main idea is to slightly modify the time-step size such that the approximated solution fulfills the underlying entropy conservation/dissipation constraint. In this paper, we first study the relaxation technique applied to the DeC approach as an ODE solver, then we extend this combination to the residual distribution method, requiring more technical steps. The outcome is a class of cG methods that is fully entropy conservative/dissipative and where we can still avoid the inversion of a mass matrix.

Published online:
DOI: 10.5802/smai-jcm.82
Classification: 65M60, 65L05
Keywords: relaxation, entropy conservative / dissipation, deferred correction, residual distribution

Rémi Abgrall 1; Élise Le Mélédo 1; Philipp Öffner 2; Davide Torlo 3

1 Institute of Mathematics,University of Zurich, Switzerland
2 Institute of Mathematics, Johannes Gutenberg-University Mainz, Germany
3 SISSA mathLab, SISSA, Trieste, Italy
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2022__8__125_0,
author = {R\'emi Abgrall and \'Elise Le M\'el\'edo and Philipp \"Offner and Davide Torlo},
title = {Relaxation {Deferred} {Correction} {Methods} and their {Applications} to {Residual} {Distribution} {Schemes}},
journal = {The SMAI Journal of computational mathematics},
pages = {125--160},
publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
volume = {8},
year = {2022},
doi = {10.5802/smai-jcm.82},
language = {en},
url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.82/}
}
TY  - JOUR
AU  - Rémi Abgrall
AU  - Élise Le Mélédo
AU  - Philipp Öffner
AU  - Davide Torlo
TI  - Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 125
EP  - 160
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.82/
DO  - 10.5802/smai-jcm.82
LA  - en
ID  - SMAI-JCM_2022__8__125_0
ER  - 
%0 Journal Article
%A Rémi Abgrall
%A Élise Le Mélédo
%A Philipp Öffner
%A Davide Torlo
%T Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes
%J The SMAI Journal of computational mathematics
%D 2022
%P 125-160
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.82/
%R 10.5802/smai-jcm.82
%G en
%F SMAI-JCM_2022__8__125_0
Rémi Abgrall; Élise Le Mélédo; Philipp Öffner; Davide Torlo. Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 125-160. doi : 10.5802/smai-jcm.82. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.82/

[1] Rémi Abgrall A review of residual distribution schemes for hyperbolic and parabolic problems: the July 2010 state of the art, Commun. Comput. Phys., Volume 11 (2012) no. 4, pp. 1043-1080 | DOI | MR | Zbl

[2] Rémi Abgrall High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices, J. Sci. Comput., Volume 73 (2017) no. 2, pp. 461-494 | DOI | MR | Zbl

[3] Rémi Abgrall A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes, J. Comput. Phys., Volume 372 (2018), pp. 640-666 | DOI | MR | Zbl

[4] Rémi Abgrall; Paola Bacigaluppi; Svetlana Tokareva High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics, Comput. Math. Appl., Volume 78 (2019) no. 2, pp. 274-297 | DOI | MR | Zbl

[5] Rémi Abgrall; Élise Le Mélédo; Philipp Öffner On the Connection between Residual Distribution Schemes and Flux Reconstruction (2018) (https://arxiv.org/abs/1807.01261)

[6] Rémi Abgrall; Elise le Mélédo; Philipp Offner; Hendrik Ranocha Error boundedness of correction procedure via reconstruction/flux reconstruction and the connection to residual distribution schemes, Hyperbolic Problems: Theory, Numerics, Applications (2018), p. 215 | Zbl

[7] Rémi Abgrall; Jan Nordström; Philipp Öffner; Svetlana Tokareva Analysis of the SBP-SAT stabilization for finite element methods part I: Linear problems, J. Sci. Comput., Volume 85 (2020) no. 2, pp. 1-29 | MR | Zbl

[8] Rémi Abgrall; Jan Nordström; Philipp Öffner; Svetlana Tokareva Analysis of the SBP-SAT stabilization for finite element methods part II: Entropy stability, Commun. Appl. Math. Comput. (2021), pp. 1-23

[9] Rémi Abgrall; Philipp Öffner; Hendrik Ranocha Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes: Application to Structure Preserving Discretization, J. Comput. Phys. (2022), p. 110955 | DOI | MR | Zbl

[10] Rémi Abgrall; Davide Torlo High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models, SIAM J. Sci. Comput., Volume 42 (2020) no. 3, p. B816-B845 | DOI | MR | Zbl

[11] Paola Bacigaluppi; Rémi Abgrall; Svetlana Tokareva “A Posteriori” Limited High Order and Robust Residual Distribution Schemes for Transient Simulations of Fluid Flows in Gas Dynamics (2019) (https://arxiv.org/abs/1902.07773)

[12] Erik Burman; Alexandre Ern Continuous interior penalty $hp$-finite element methods for advection and advection-diffusion equations, Math. Comput., Volume 76 (2007) no. 259, pp. 1119-1140 | DOI | MR | Zbl

[13] Erik Burman; Peter Hansbo The edge stabilization method for finite elements in CFD, Numerical mathematics and advanced applications, Springer, 2004, pp. 196-203 | DOI

[14] Tianheng Chen; Chi-Wang Shu Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., Volume 345 (2017), pp. 427-461 | DOI | MR | Zbl

[15] Andrew Christlieb; Benjamin Ong; Jing-Mei Qiu Integral deferred correction methods constructed with high order Runge-Kutta integrators, Math. Comput., Volume 79 (2010) no. 270, pp. 761-783 | DOI | MR | Zbl

[16] Gary Cohen; Xavier Ferrieres; Sébastien Pernet A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain, J. Comput. Phys., Volume 217 (2006) no. 2, pp. 340-363 | DOI | MR

[17] Gary Cohen; Patrick Joly; Jean Roberts; Nathalie Tordjman Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM J. Numer. Anal., Volume 38 (2001) | DOI | MR

[18] Jim Douglas; Todd Dupont Interior Penalty Procedures for Elliptic and Parabolic Galerkin Method, 58, Springer (2008), pp. 207-216 | DOI

[19] Alok Dutt; Leslie Greengard; Vladimir Rokhlin Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math., Volume 40 (2000) no. 2, pp. 241-266 | DOI | MR | Zbl

[20] Jan Glaubitz; Philipp Öffner Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points, Appl. Numer. Math., Volume 151 (2020), pp. 98-118 | DOI | MR | Zbl

[21] Jan Glaubitz; Philipp Öffner; Hendrik Ranocha; Thomas Sonar Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators, XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer (2016), pp. 363-375 | Zbl

[22] Sigal Gottlieb; David Ketcheson; Chi-Wang Shu High order strong stability preserving time discretizations, J. Sci. Comput., Volume 38 (2009) no. 3, pp. 251-289 | DOI | MR | Zbl

[23] Maria Han Veiga; Philipp Öffner; Davide Torlo DeC and ADER: Similarities, Differences and a Unified Framework, J. Sci. Comput., Volume 87 (2021) no. 1, pp. 1-35 | MR | Zbl

[24] Amiram Harten On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., Volume 49 (1983), pp. 151-164 | DOI | MR | Zbl

[25] Juntao Huang; Chi-Wang Shu Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows, J. Sci. Comput., Volume 78 (2019) no. 3, pp. 1811-1839 | DOI | MR | Zbl

[26] David Ketcheson Relaxation Runge–Kutta Methods: Conservation and Stability for Inner-Product Norms, SIAM J. Numer. Anal., Volume 57 (2019) no. 6, pp. 2850-2870 | DOI | MR | Zbl

[27] David Ketcheson; Umair bin Waheed A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel, Commun. Appl. Math. Comput. Sci., Volume 9 (2014) no. 2, pp. 175-200 | DOI | MR | Zbl

[28] Dmitri Kuzmin; Manuel Quezada de Luna; David Ketcheson; Johanna Grüll Bound-preserving Flux Limiting for High-Order Explicit Runge–Kutta Time Discretizations of Hyperbolic Conservation Laws, J. Sci. Comput., Volume 91 (2022) no. 1, p. 21 | DOI | MR | Zbl

[29] Yuan Liu; Chi-Wang Shu; Mengping Zhang Strong stability preserving property of the deferred correction time discretization, J. Comput. Math. (2008), pp. 633-656 | MR | Zbl

[30] Andreas Meister; Sigrun Ortleb On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows, Int. J. Numer. Methods Fluids, Volume 76 (2014) no. 2, pp. 69-94 | DOI | MR | Zbl

[31] Sixtine Michel; Davide Torlo; Mario Ricchiuto; Rémi Abgrall Spectral Analysis of Continuous FEM for Hyperbolic PDEs: Influence of Approximation, Stabilization, and Time-Stepping, J. Sci. Comput., Volume 89 (2021) no. 31 | MR | Zbl

[32] Michael Minion Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci., Volume 1 (2003) no. 3, pp. 471-500 | DOI | MR | Zbl

[33] Stephan Nüßlein; Hendrik Ranocha; David Ketcheson Positivity-preserving adaptive Runge–Kutta methods, Commun. Appl. Math. Comput. Sci., Volume 16 (2021) no. 2, pp. 155-179 | DOI | MR | Zbl

[34] Philipp Öffner Approximation and Stability properties of Numerical Methods for Hyperbolic Conservation Laws, Habilitation Thesis, University Zurich (2020)

[35] Philipp Öffner; Jan Glaubitz; Hendrik Ranocha Analysis of Artificial Dissipation of Explicit and Implicit Time-Integration Methods, Int. J. Numer. Anal. Model., Volume 17 (2020) no. 3, pp. 332-349 | MR | Zbl

[36] Philipp Öffner; Davide Torlo Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes, Appl. Numer. Math., Volume 153 (2020), pp. 15-34 | DOI | MR | Zbl

[37] Hendrik Ranocha; David Ketcheson Relaxation Runge–Kutta Methods for inner-product norms, 2019

[38] Hendrik Ranocha; David Ketcheson Relaxation Runge-Kutta Methods for Hamiltonian Problems, J. Sci. Comput., Volume 84 (2020) no. 1, pp. 1-27 | MR | Zbl

[39] Hendrik Ranocha; Lajos Lóczi; David Ketcheson General relaxation methods for initial-value problems with application to multistep schemes, Numer. Math., Volume 146 (2020) no. 4, pp. 875-906 | DOI | MR | Zbl

[40] Hendrik Ranocha; Philipp Öffner; Thomas Sonar Summation-by-parts operators for correction procedure via reconstruction, J. Comput. Phys., Volume 311 (2016), pp. 299-328 | arXiv | DOI | MR | Zbl

[41] Hendrik Ranocha; Mohammed Sayyari; Lisandro Dalcin; Matteo Parsani; David Ketcheson Relaxation Runge–Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier–Stokes Equations, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. A612-A638 | DOI | MR | Zbl

[42] Mario Ricchiuto; Rémi Abgrall Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case, J. Comput. Phys., Volume 229 (2010) no. 16, pp. 5653-5691 | DOI | MR | Zbl

[43] Mario Ricchiuto; Davide Torlo Analytical travelling vortex solutions of hyperbolic equations for validating very high order schemes (2021) (https://arxiv.org/abs/2109.10183)

[44] Davide Torlo Hyperbolic Problems: High Order Methods and Model Order Reduction, Ph. D. Thesis, University Zurich (2020)

Cited by Sources: