High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 161-199.

Multiresolution provides a fundamental tool based on the wavelet theory to build adaptive numerical schemes for Partial Differential Equations and time-adaptive meshes, allowing for error control. We have previously introduced this strategy to construct adaptive lattice Boltzmann methods with this interesting feature. Furthermore, these schemes allow for an effective memory compression of the solution when spatially localized phenomena (such as shocks or fronts) are involved, to rely on the original scheme without any manipulation at the finest level of grid and to reach a high level of accuracy on the solution. Nevertheless, the peculiar way of modeling the desired physical phenomena in the lattice Boltzmann schemes calls, besides the possibility of controlling the error introduced by the mesh adaptation, for a deeper and more precise understanding of how mesh adaptation alters the target equations describing the physics. In this contribution, this issue is studied by performing the equivalent equations analysis of the adaptive method after writing the scheme under an adapted formalism. It provides an essential tool to master the perturbations introduced by the adaptive numerical strategy, which can thus be devised to preserve the desired features of the reference scheme at a high order of accuracy. The theoretical considerations are corroborated by numerical experiments in both the 1D and 2D context, showing the relevance of the analysis. In particular, we show that our numerical method outperforms traditional approaches, whether or not the solution of the reference scheme converges to the solution of the target equation. Furthermore, we discuss the influence of various collision strategies for non-linear problems, showing that they have only a marginal impact on the quality of the solution, thus further assessing the proposed strategy.

Published online:
DOI: 10.5802/smai-jcm.83
Classification: 65M99, 65M50, 76M28
Keywords: lattice Boltzmann method, adaptive mesh refinement, multiresolution analysis, equivalent equations
Thomas Bellotti 1; Loïc Gouarin 1; Benjamin Graille 2; Marc Massot 1

1 CMAP, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France.
2 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France.
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Thomas Bellotti and Lo{\"\i}c Gouarin and Benjamin Graille and Marc Massot},
     title = {High accuracy analysis of adaptive multiresolution-based lattice {Boltzmann} schemes via the equivalent equations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {161--199},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.83},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.83/}
AU  - Thomas Bellotti
AU  - Loïc Gouarin
AU  - Benjamin Graille
AU  - Marc Massot
TI  - High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 161
EP  - 199
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.83/
DO  - 10.5802/smai-jcm.83
LA  - en
ID  - SMAI-JCM_2022__8__161_0
ER  - 
%0 Journal Article
%A Thomas Bellotti
%A Loïc Gouarin
%A Benjamin Graille
%A Marc Massot
%T High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations
%J The SMAI Journal of computational mathematics
%D 2022
%P 161-199
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.83/
%R 10.5802/smai-jcm.83
%G en
%F SMAI-JCM_2022__8__161_0
Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot. High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 161-199. doi : 10.5802/smai-jcm.83. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.83/

[1] Milton Abramowitz; Irene A. Stegun Handbook of mathematical functions with formulas, graphs, and mathematical tables, 55, US Government printing office, 1964

[2] Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps? (2021) (To appear in C. R. Math. Acad. Sci. Paris, https://hal.archives-ouvertes.fr/hal-03235133, https://arxiv.org/abs/2105.13816)

[3] Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis (2021) (To appear in J. Comput. Phys., https://hal.archives-ouvertes.fr/hal-03158073, https://arxiv.org/abs/2103.02903)

[4] Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws, SIAM J. Sci. Comput., Volume 44 (2022) no. 4, p. A2599-A2627

[5] Barna L. Bihari; Ami Harten Multiresolution schemes for the numerical solution of 2-D conservation laws I, SIAM J. Sci. Comput., Volume 18 (1997) no. 2, pp. 315-354 | DOI | MR | Zbl

[6] Bruce Boghosian; François Dubois; Benjamin Graille; Pierre Lallemand; Mohamed-Mahdi Tekitek Curious Convergence Properties of Lattice Boltzmann Schemes for Diffusion with Acoustic Scaling, Commun. Comput. Phys., Volume 23 (2018) no. 4, pp. 1263-1278 | arXiv | MR | Zbl

[7] Filipa Caetano; François Dubois; Benjamin Graille A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme (2019) (https://arxiv.org/abs/1905.12393)

[8] Sydney Chapman; Thomas George Cowling; David Burnett The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Cambridge University Press, 1990

[9] Albert Cohen; Sidi Kaber; Siegfried Müller; Marie Postel Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comput., Volume 72 (2003) no. 241, pp. 183-225 | DOI | MR | Zbl

[10] Phillip Colella Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., Volume 87 (1990) no. 1, pp. 171-200 | DOI | MR | Zbl

[11] Stéphane Dellacherie Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation, Acta Appl. Math., Volume 131 (2014) no. 1, pp. 69-140 | DOI | MR | Zbl

[12] Ronald A. DeVore; Robert C. Sharpley Maximal functions measuring smoothness, 293, American Mathematical Society, 1984

[13] François Dubois Equivalent partial differential equations of a lattice Boltzmann scheme, Comput. Math. Appl., Volume 55 (2008) no. 7, pp. 1441-1449 | DOI | MR | Zbl

[14] François Dubois Stable lattice Boltzmann schemes with a dual entropy approach for monodimensional nonlinear waves, Comput. Math. Appl., Volume 65 (2013) no. 2, pp. 142-159 | DOI | MR | Zbl

[15] François Dubois Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes, Asymptotic Anal. (2019), pp. 1-41 (To appear)

[16] Alexandre Dupuis; Bastien Chopard Theory and applications of an alternative lattice Boltzmann grid refinement algorithm, Phys. Rev. E, Volume 67 (2003) no. 6, p. 066707 | DOI

[17] Georg Eitel-Amor; Matthias Meinke; Wolfgang Schröder A lattice-Boltzmann method with hierarchically refined meshes, Computers & Fluids, Volume 75 (2013), pp. 127-139 | DOI | Zbl

[18] Abbas Fakhari; Martin Geier; Taehun Lee A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., Volume 315 (2016), pp. 434-457 | DOI | MR | Zbl

[19] Abbas Fakhari; Taehun Lee Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique, Phys. Rev. E, Volume 89 (2014) no. 3, p. 033310 | DOI

[20] Abbas Fakhari; Taehun Lee Numerics of the lattice Boltzmann method on nonuniform grids: standard LBM and finite-difference LBM, Computers & Fluids, Volume 107 (2015), pp. 205-213 | DOI | MR | Zbl

[21] Olga Filippova; Dieter Hänel Grid refinement for lattice-BGK models, J. Comput. Phys., Volume 147 (1998) no. 1, pp. 219-228 | DOI | Zbl

[22] Benjamin Graille Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method, J. Comput. Phys., Volume 266 (2014), pp. 74-88 | DOI | MR | Zbl

[23] Nune Hovhannisyan; Siegfried Müller On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies, IMA J. Numer. Anal., Volume 30 (2010) no. 4, pp. 1256-1295 | DOI | MR | Zbl

[24] Timm Krüger; Halim Kusumaatmaja; Alexandr Kuzmin; Orest Shardt; Goncalo Silva; Erlend Magnus Viggen The lattice Boltzmann method, Springer International Publishing, Volume 10 (2017) no. 978-3, pp. 4-15 | Zbl

[25] Pierre Lallemand; Li-Shi Luo Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, Volume 61 (2000) no. 6, p. 6546 | DOI | MR

[26] Mikel Landajuela Burgers equation, BCAM Internship report: Basque Center for Applied Mathematics (2011)

[27] Randall LeVeque Finite volume methods for hyperbolic problems, 31, Cambridge University Press, 2002 | DOI

[28] Marc-Arthur N’Guessan; Marc Massot; Laurent Séries; Christian Tenaud High order time integration and mesh adaptation with error control for incompressible Navier–Stokes and scalar transport resolution on dual grids, J. Comput. Appl. Math., Volume 387 (2021), p. 112542 | DOI | MR | Zbl

[29] Martin Rohde; Drona Kandhai; Jacobus Derksen; Harry E. A. Van den Akker A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes, Int. J. Numer. Methods Fluids, Volume 51 (2006) no. 4, pp. 439-468 | DOI | MR | Zbl

Cited by Sources: