Parallel kinetic scheme for transport equations in complex toroidal geometry
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 249-271.

We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.

Published online:
DOI: 10.5802/smai-jcm.86
Classification: 35L65, 65M12, 35Q83, 82D10
Keywords: plasma physics, kinetic scheme, discontinuous Galerkin

Matthieu Boileau 1; Bérenger Bramas 2; Emmanuel Franck 1; Romane Hélie 1; Philippe Helluy 1; Laurent Navoret 1

1 Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France & INRIA Nancy-Grand Est, TONUS Project, Strasbourg, France
2 INRIA Nancy-Grand Est, CAMUS Project, Strasbourg, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2022__8__249_0,
     author = {Matthieu Boileau and B\'erenger Bramas and Emmanuel Franck and Romane H\'elie and Philippe Helluy and Laurent Navoret},
     title = {Parallel kinetic scheme for transport equations in complex toroidal geometry},
     journal = {The SMAI Journal of computational mathematics},
     pages = {249--271},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.86},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.86/}
}
TY  - JOUR
AU  - Matthieu Boileau
AU  - Bérenger Bramas
AU  - Emmanuel Franck
AU  - Romane Hélie
AU  - Philippe Helluy
AU  - Laurent Navoret
TI  - Parallel kinetic scheme for transport equations in complex toroidal geometry
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 249
EP  - 271
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.86/
DO  - 10.5802/smai-jcm.86
LA  - en
ID  - SMAI-JCM_2022__8__249_0
ER  - 
%0 Journal Article
%A Matthieu Boileau
%A Bérenger Bramas
%A Emmanuel Franck
%A Romane Hélie
%A Philippe Helluy
%A Laurent Navoret
%T Parallel kinetic scheme for transport equations in complex toroidal geometry
%J The SMAI Journal of computational mathematics
%D 2022
%P 249-271
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.86/
%R 10.5802/smai-jcm.86
%G en
%F SMAI-JCM_2022__8__249_0
Matthieu Boileau; Bérenger Bramas; Emmanuel Franck; Romane Hélie; Philippe Helluy; Laurent Navoret. Parallel kinetic scheme for transport equations in complex toroidal geometry. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 249-271. doi : 10.5802/smai-jcm.86. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.86/

[1] D. Aregba-Driollet; R. Natalini Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. Numer. Anal., Volume 37 (2000) no. 6, pp. 1973-2004 | DOI | MR | Zbl

[2] J. Badwaik; M. Boileau; D. Coulette; E. Franck; P. Helluy; C. Klingenberg; L. Mendoza; H. Oberlin Task-based parallelization of an implicit kinetic scheme, ESAIM, Proc. Surv., Volume 63 (2018), pp. 60-77 | DOI | MR | Zbl

[3] N. Besse; M. Mehrenberger Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov–Poisson system, Math. Comput., Volume 77 (2008) no. 261, pp. 93-123 | DOI | MR | Zbl

[4] F. Bouchut Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., Volume 95 (1999) no. 1-2, pp. 113-170 | DOI | MR | Zbl

[5] B. Bramas; A. Ketterlin Improving parallel executions by increasing task granularity in task-based runtime systems using acyclic DAG clustering, PeerJ Computer Science, Volume 6 (2020), e247 | DOI

[6] S. Chen; G. D. Doolen Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 329-364 | DOI | MR | Zbl

[7] D. Coulette; E. Franck; P. Helluy; M. Mehrenberger; L. Navoret High-order implicit palindromic Discontinuous Galerkin method for kinetic-relaxation approximation, Comput. Fluids (2019) | DOI | MR | Zbl

[8] C. Courtès; D. Coulette; E. Franck; L. Navoret Vectorial kinetic relaxation model with central velocity. application to implicit relaxations schemes, Commun. Comput. Phys., Volume 27 (2020) no. 4 | MR | Zbl

[9] N. Crouseilles; P. Glanc; S. A. Hirstoaga; E. Madaule; M. Mehrenberger; J. Pétri A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 68 (2014) no. 9, 252 | DOI | HAL

[10] P. J. Dellar An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., Volume 65 (2013) no. 2, pp. 129-141 | DOI | MR | Zbl

[11] G. Dimarco; R. Loubère Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation, J. Comput. Phys., Volume 255 (2013), pp. 680-698 | DOI | MR | Zbl

[12] G. Dimarco; R. Loubère; J. Narski; T. Rey An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys., Volume 353 (2018), pp. 46-81 | DOI | MR | Zbl

[13] F. Drui; E. Franck; P. Helluy; L. Navoret An analysis of over-relaxation in a kinetic approximation of systems of conservation laws, C. R. Méc. Acad. Sci. Paris, Volume 347 (2019) no. 3, pp. 259-269

[14] F. Dubois Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes, Asymptotic Anal., Volume 127 (2022) no. 4, pp. 297-337 | DOI | MR | Zbl

[15] F. Dubois; T. Février; B. Graille Lattice Boltzmann schemes with relative velocities, Commun. Comput. Phys., Volume 17 (2015) no. 4, pp. 1088-1112 | DOI | MR | Zbl

[16] F. Dubois; P. Lallemand Towards higher order lattice Boltzmann schemes, J. Stat. Mech. Theory Exp., Volume 2009 (2009) no. 6 | DOI | Zbl

[17] B. Graille Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method, J. Comput. Phys., Volume 266 (2014), pp. 74-88 | DOI | MR | Zbl

[18] V. Grandgirard; J. Abiteboul; J. Bigot; T. Cartier-Michaud; N. Crouseilles; G. Dif-Pradalier; C. Ehrlacher; D. Esteve; X. Garbet; P. Ghendrih et al. A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., Volume 207 (2016), pp. 35-68 | DOI | MR | Zbl

[19] H. Guillard; J. Lakhlili; A. Loseille; A. Loyer; B. Nkonga; . Ratnani; A. Elarif Tokamesh: A software for mesh generation in Tokamaks (2018) (Research Report, RR-9230, CASTOR.)

[20] J. S. Hesthaven; T. Warburton Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer, 2007

[21] G. Latu; M. Mehrenberger; Y. Güçlü; M. Ottaviani; E. Sonnendrücker Field-aligned interpolation for semi-Lagrangian gyrokinetic simulations, J. Sci. Comput., Volume 74 (2018) no. 3, pp. 1601-1650 | DOI | MR | Zbl

[22] E. Madaule; S. A. Hirstoaga; M. Mehrenberger; J. Pétri Semi-Lagrangian simulations of the diocotron instability (2013) (Research Report) | HAL

[23] Y. H. Qian; D. d’Humières; P. Lallemand Lattice BGK models for Navier-Stokes equation, Eur. Phys. Lett., Volume 17 (1992) no. 6, p. 479 | DOI | Zbl

[24] E. Sonnendrücker; J. Roche; P. Bertrand; A. Ghizzo The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., Volume 149 (1999) no. 2, pp. 201-220 | DOI | MR | Zbl

[25] A. Storelli; L. Vermare; P. Hennequin; Ö. D. Gürcan; G. Dif-Pradalier; Y. Sarazin; X. Garbet; T. Görler; R. Singh; P. Morel; V. Grandgirard; P. Ghendrih; Tore Supra team Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations, Phys. Plasmas, Volume 22 (2015) no. 6, p. 062508 | DOI

[26] R. Zhang; H. Fan; H. Chen A lattice Boltzmann approach for solving scalar transport equations, Philos. Trans. R. Soc. Lond., Ser. A, Volume 369 (2011) no. 1944, pp. 2264-2273 | MR | Zbl

Cited by Sources: