Finite-size effects in response functions of molecular systems
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 273-294.

We consider an electron in a localized potential submitted to a weak external, time-dependent field. In the linear response regime, the response function can be computed using Kubo’s formula. In this paper, we consider the numerical approximation of the response function by means of a truncation to a finite region of space. This is necessarily a singular approximation because of the discreteness of the spectrum of the truncated Hamiltonian, and in practice a regularization (smoothing) has to be used. Our results provide error estimates for the response function past the ionization threshold with respect to both the smoothing parameter and the size of the computational domain.

Published online:
DOI: 10.5802/smai-jcm.87
Classification: 35P25, 35Q40
Keywords: linear response, scattering, limiting absorption principle, finite-size effects

Mi-Song Dupuy 1; Antoine Levitt 2

1 Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France
2 Inria Paris and Université Paris-Est, CERMICS, École des Ponts ParisTech, Marne-la-Vallée, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2022__8__273_0,
     author = {Mi-Song Dupuy and Antoine Levitt},
     title = {Finite-size effects in response functions of molecular systems},
     journal = {The SMAI Journal of computational mathematics},
     pages = {273--294},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.87},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.87/}
}
TY  - JOUR
AU  - Mi-Song Dupuy
AU  - Antoine Levitt
TI  - Finite-size effects in response functions of molecular systems
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 273
EP  - 294
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.87/
DO  - 10.5802/smai-jcm.87
LA  - en
ID  - SMAI-JCM_2022__8__273_0
ER  - 
%0 Journal Article
%A Mi-Song Dupuy
%A Antoine Levitt
%T Finite-size effects in response functions of molecular systems
%J The SMAI Journal of computational mathematics
%D 2022
%P 273-294
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.87/
%R 10.5802/smai-jcm.87
%G en
%F SMAI-JCM_2022__8__273_0
Mi-Song Dupuy; Antoine Levitt. Finite-size effects in response functions of molecular systems. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 273-294. doi : 10.5802/smai-jcm.87. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.87/

[1] Shmuel Agmon Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (1975) no. 2, pp. 151-218 | Numdam | MR | Zbl

[2] Werner O. Amrein; Anne Boutet de Monvel; Vladimir Georgescu C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians: Concepts and Applications, Progress in Mathematics, Springer, 1996 | DOI

[3] Xavier Antoine; Emmanuel Lorin; Qinglin Tang A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations, Molecular Physics, Volume 115 (2017) no. 15-16, pp. 1861-1879 | DOI

[4] Sven Bachmann; Wojciech De Roeck; Martin Fraas The adiabatic theorem and linear response theory for extended quantum systems, Commun. Math. Phys., Volume 361 (2018) no. 3, pp. 997-1027 | DOI | MR | Zbl

[5] Jean-Marc Bouclet; Francois Germinet; Abel Klein; Jeffrey H. Schenker Linear response theory for magnetic Schrödinger operators in disordered media, J. Funct. Anal., Volume 226 (2005) no. 2, pp. 301-372 | DOI | Zbl

[6] Kieron Burke; Jan Werschnik; E. K. U. Gross Time-dependent density functional theory: Past, present, and future, J. Chem. Phys., Volume 123 (2005) no. 6, 062206 | DOI

[7] Eric Cancès; Rachida Chakir; Yvon Maday Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 2, pp. 341-388 | DOI | Numdam | MR | Zbl

[8] Eric Cancès; Virginie Ehrlacher; David Gontier; Antoine Levitt; Damiano Lombardi Numerical quadrature in the Brillouin zone for periodic Schrödinger operators, Numer. Math., Volume 144 (2020) no. 3, pp. 479-526 | DOI | Zbl

[9] Eric Cancès; Virginie Ehrlacher; Yvon Maday Non-consistent approximations of self-adjoint eigenproblems: application to the supercell method, Numer. Math., Volume 128 (2014) no. 4, pp. 663-706 | DOI | MR | Zbl

[10] Eric Cancès; Clotilde Fermanian Kammerer; Antoine Levitt; Sami Siraj-Dine Coherent electronic transport in periodic crystals (2020) (https://arxiv.org/abs/2002.01990)

[11] Eric Cancès; Claude Le Bris On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci., Volume 9 (1999) no. 07, pp. 963-990 | DOI | MR | Zbl

[12] Eric Cancès; Gabriel Stoltz A mathematical formulation of the random phase approximation for crystals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 6, pp. 887-925 | DOI | Numdam | MR | Zbl

[13] Mark E. Casida Time-dependent density functional response theory for molecules, Recent Advances In Density Functional Methods: (Part I), World Scientific, 1995, pp. 155-192 | DOI

[14] Alessandro Cerioni; Luigi Genovese; Ivan Duchemin; Thierry Deutsch Accurate complex scaling of three dimensional numerical potentials, J. Chem. Phys., Volume 138 (2013) no. 20, 204111

[15] Gabriele Ciaramella; Martin Sprengel; Alfio Borzi A theoretical investigation of time-dependent Kohn–Sham equations: new proofs, Appl. Anal., Volume 100 (2021) no. 10, pp. 2254-2273 | DOI | MR

[16] Matthew Colbrook; Andrew Horning; Alex Townsend Computing spectral measures of self-adjoint operators, SIAM Rev., Volume 63 (2021) no. 3, pp. 489-524 | DOI | MR | Zbl

[17] O. Costin; R. D. Costin; J. L. Lebowitz; A. Rokhlenko Evolution of a Model Quantum System Under Time Periodic Forcing: Conditions for Complete Ionization, Commun. Math. Phys., Volume 221 (2001) no. 1, pp. 1-26 | DOI | MR | Zbl

[18] Marco d’Alessandro; Luigi Genovese Locality and computational reliability of linear response calculations for molecular systems, Phys. Rev. Mater., Volume 3 (2019) no. 2, 023805

[19] Daisuke Fujiwara A construction of the fundamental solution for the Schrödinger equation, J. Anal. Math., Volume 35 (1979) no. 1, pp. 41-96 | DOI | Zbl

[20] Christian Gérard Resonance theory for periodic Schrödinger operators, Bull. Soc. Math. Fr., Volume 118 (1990) no. 1, pp. 27-54 | DOI | Numdam | Zbl

[21] David Gontier; Salma Lahbabi Convergence rates of supercell calculations in the reduced Hartree- Fock model, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 5, pp. 1403-1424 | DOI | Numdam | MR | Zbl

[22] David Gontier; Salma Lahbabi Supercell calculations in the reduced Hartree–Fock model for crystals with local defects, AMRX, Appl. Math. Res. Express, Volume 2017 (2017) no. 1, pp. 1-64 | MR | Zbl

[23] Arne Jensen; Éric Mourre; Peter Perry Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 41 (1984) no. 2, pp. 207-225 | Numdam | MR | Zbl

[24] Ryogo Kubo Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, Volume 12 (1957) no. 6, pp. 570-586 | DOI | MR

[25] Antoine Levitt Screening in the Finite-Temperature Reduced Hartree–Fock Model, Arch. Ration. Mech. Anal., Volume 238 (2020) no. 2, pp. 901-927 | DOI | MR | Zbl

[26] Éric Mourre Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., Volume 78 (1981) no. 3, pp. 391-408 | DOI | MR | Zbl

[27] J. G. Muga; J. P. Palao; B. Navarro; I. L. Egusquiza Complex absorbing potentials, Phys. Rep., Volume 395 (2004) no. 6, pp. 357-426 | DOI | MR

[28] Patrick Norman; Kenneth Ruud; Trond Saue Principles and practices of molecular properties: Theory, modeling, and simulations, John Wiley & Sons, 2018 | DOI

[29] Emil Prodan Quantum transport in disordered systems under magnetic fields: A study based on operator algebras, AMRX, Appl. Math. Res. Express, Volume 2013 (2013) no. 2, pp. 176-265 | MR | Zbl

[30] Fabio Pusateri; Israel Michael Sigal Long-time behaviour of time-dependent density functional theory, Arch. Ration. Mech. Anal. (2021), pp. 1-27 | MR | Zbl

[31] Michael Reed; Barry Simon Methods of modern mathematical physics. III: Scattering theory, Elsevier, 1978

[32] Michael Reed; Barry Simon Methods of modern mathematical physics. IV: Analysis of operators, Elsevier, 1978

[33] Oscar Sánchez; Juan Soler Long-time dynamics of the Schrödinger–Poisson–Slater system, J. Stat. Phys., Volume 114 (2004) no. 1, pp. 179-204 | DOI | Zbl

[34] Plamen Stefanov Approximating resonances with the complex absorbing potential method, Commun. Partial Differ. Equations, Volume 30 (2005) no. 12, pp. 1843-1862 | DOI | MR | Zbl

[35] Stefan Teufel Non-equilibrium almost-stationary states and linear response for gapped quantum systems, Commun. Math. Phys., Volume 373 (2020) no. 2, pp. 621-653 | DOI | MR | Zbl

[36] K. Yabana; T. Nakatsukasa; J.-I. Iwata; G. F. Bertsch Real-time, real-space implementation of the linear response time-dependent density-functional theory, physica status solidi (b), Volume 243 (2006) no. 5, pp. 1121-1138 | DOI

Cited by Sources: