Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains
The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 101-124.

We describe a new method for computing coherent Lagrangian vortices in two-dimensional flows according to any of the following approaches: black-hole vortices [24], objective Eulerian Coherent Structures (OECSs) [39], material barriers to diffusive transport [25, 26], and constrained diffusion barriers [26]. The method builds on ideas developed previously in [30], but our implementation alleviates a number of shortcomings and allows for the fully automated detection of such vortices on unprecedentedly challenging real-world flow problems, for which specific human interference is absolutely infeasible. Challenges include very large domains and/or parameter spaces. We demonstrate the efficacy of our method in dealing with such challenges on two test cases: first, a parameter study of a turbulent flow, and second, computing material barriers to diffusive transport in the global ocean.

Supplementary Materials:
Supplementary materials for this article are supplied as separate files:

Published online:
DOI: 10.5802/smai-jcm.63
Classification: 65P99, 86-08
Keywords: Lagrangian coherent structures, coherent vortices, turbulent flows

Daniel Karrasch 1; Nathanael Schilling 1

1 Department of Mathematics, Technische Universität München, Garching bei München, Germany
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2020__6__101_0,
     author = {Daniel Karrasch and Nathanael Schilling},
     title = {Fast and robust computation of coherent {Lagrangian} vortices on very large two-dimensional domains},
     journal = {The SMAI Journal of computational mathematics},
     pages = {101--124},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {6},
     year = {2020},
     doi = {10.5802/smai-jcm.63},
     mrnumber = {4100533},
     zbl = {07207995},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/}
}
TY  - JOUR
AU  - Daniel Karrasch
AU  - Nathanael Schilling
TI  - Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains
JO  - The SMAI Journal of computational mathematics
PY  - 2020
SP  - 101
EP  - 124
VL  - 6
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/
DO  - 10.5802/smai-jcm.63
LA  - en
ID  - SMAI-JCM_2020__6__101_0
ER  - 
%0 Journal Article
%A Daniel Karrasch
%A Nathanael Schilling
%T Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains
%J The SMAI Journal of computational mathematics
%D 2020
%P 101-124
%V 6
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/
%R 10.5802/smai-jcm.63
%G en
%F SMAI-JCM_2020__6__101_0
Daniel Karrasch; Nathanael Schilling. Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains. The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 101-124. doi : 10.5802/smai-jcm.63. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/

[1] R. Abernathey; G. Haller Transport by Lagrangian Vortices in the Eastern Pacific, J. Phys. Ocean., Volume 48 (2018) no. 3, pp. 667-685 | DOI

[2] M. R. Allshouse; J.-L. Thiffeault Detecting coherent structures using braids, Physica D, Volume 241 (2012) no. 2, pp. 95-105 | DOI

[3] R. Banisch; P. Koltai Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets, Chaos, Volume 27 (2017) no. 3, 035804 | DOI | MR | Zbl

[4] J. Bezanson; A. Edelman; S. Karpinski; V. B. Shah Julia: A fresh approach to numerical computing, SIAM Rev., Volume 59 (2017) no. 1, pp. 65-98 | DOI | MR | Zbl

[5] K. Carlsson NearestNeighbors.jl: High performance nearest neighbor data structures and algorithms for Julia, 2018 (https://github.com/kristofferc/nearestneighbors.jl)

[6] M. Chilenski; I. Faust; J. Walk eqtools: Modular, extensible, open-source, cross-machine Python tools for working with magnetic equilibria, Comput. Phys. Commun., Volume 210 (2017), pp. 155-162 | DOI

[7] N. C. Constantinou Formation of large-scale structures by turbulence in rotating planets, Ph. D. Thesis, National and Kapodistrian University of Athens (2015) | arXiv

[8] N. C. Constantinou; G. L. Wagner FourierFlows/GeophysicalFlows.jl: GeophysicalFlows v0.3.0, 2019 (https://github.com/fourierflows/geophysicalflows.jl) | DOI

[9] W. P. M. de Ruijter; A. Biastoch; S. S. Drijfhout; J. R. E. Lutjeharms; R. P. Matano; T. Pichevin; P. J. van Leeuwen; W. Weijer Indian-Atlantic interocean exchange: Dynamics, estimation and impact, J. Geophys. Res. Oceans, Volume 104 (1999) no. C9, pp. 20885-20910 | DOI

[10] T. Delmarcelle; L. Hesselink, Proceedings of the conference on Visualization ’94 (1994), pp. 140-147 | DOI

[11] G. F. D. Duff Limit-Cycles and Rotated Vector Fields, Ann. Math., Volume 57 (1953) no. 1, pp. 15-31 | DOI | MR | Zbl

[12] M. Farazmand; D. Blazevski; G. Haller Shearless transport barriers in unsteady two-dimensional flows and maps, Physica D, Volume 278-279 (2014), pp. 44-57 | DOI | MR | Zbl

[13] G. Froyland An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Physica D, Volume 250 (2013) no. 0, pp. 1-19 | DOI | MR | Zbl

[14] G. Froyland Dynamic isoperimetry and the geometry of Lagrangian coherent structures, Nonlinearity, Volume 28 (2015) no. 10, pp. 3587-3622 | DOI | MR | Zbl

[15] G. Froyland; O. Junge Robust FEM-Based Extraction of Finite-Time Coherent Sets Using Scattered, Sparse, and Incomplete Trajectories, SIAM J. Appl. Dyn. Syst., Volume 17 (2018) no. 2, pp. 1891-1924 | DOI | MR | Zbl

[16] G. Froyland; S. Llyod; N. Santitissadeekorn Coherent sets for nonautonomous dynamical systems, Physica D, Volume 239 (2010) no. 16, pp. 1527-1541 | DOI | MR

[17] G. Froyland; K. Padberg-Gehle A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, Volume 25 (2015) no. 8, 087406 | DOI | MR | Zbl

[18] G. Froyland; Chr. P. Rock; K. Sakellariou Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification, Commun. Nonlinear Sci. Numer. Simul., Volume 77 (2019), pp. 81-107 | DOI | MR | Zbl

[19] G. Froyland; N. Santitissadeekorn; A. Monahan Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos, Volume 20 (2010) no. 4, 043116 | DOI | MR | Zbl

[20] A. Hadjighasem; M. Farazmand; D. Blazevski; G. Froyland; G. Haller A critical comparison of Lagrangian methods for coherent structure detection, Chaos, Volume 27 (2017) no. 5, 053104 | DOI | MR | Zbl

[21] A. Hadjighasem; G. Haller Geodesic Transport Barriers in Jupiter’s Atmosphere: A Video-Based Analysis, SIAM Rev., Volume 58 (2016) no. 1, pp. 69-89 | DOI | MR | Zbl

[22] A. Hadjighasem; D. Karrasch; H. Teramoto; G. Haller Spectral-clustering approach to Lagrangian vortex detection, Phys. Rev. E, Volume 93 (2016), 063107 | DOI

[23] G. Haller; F. Beron-Vera Geodesic theory of transport barriers in two-dimensional flows, Physica D, Volume 241 (2012) no. 20, pp. 1680-1702 | DOI | Zbl

[24] G. Haller; F. Beron-Vera Coherent Lagrangian vortices: the black holes of turbulence, J. Fluid Mech., Volume 731 (2013), R4 | DOI | Zbl

[25] G. Haller; D. Karrasch; F. Kogelbauer Material barriers to diffusive and stochastic transport, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 37, pp. 9074-9079 | DOI | MR | Zbl

[26] G. Haller; D. Karrasch; F. Kogelbauer Barriers to the Transport of Diffusive Scalars in Compressible Flows (2019) (submitted preprint, https://arxiv.org/abs/1902.09786) | Zbl

[27] H. Hopf Lectures on differential geometry in the large, Lecture Notes in Mathematics, 1000, Springer, 1989 | DOI | MR

[28] F. Huhn; W. M. van Rees; M. Gazzola; D. Rossinelli; G. Haller; P. Koumoutsakos Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices, Chaos, Volume 25 (2015) no. 8, 087405 | DOI | MR

[29] I. Karatzas; S. Shreve Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 113, Springer, 1991 | DOI | MR | Zbl

[30] D. Karrasch; F. Huhn; G. Haller Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows, Proc. A, R. Soc. Lond., Volume 471 (2015) no. 2173, 20140639 | DOI | MR | Zbl

[31] D. Karrasch; J. Keller A geometric heat-flow theory of Lagrangian coherent structures (2016) (https://arxiv.org/abs/1608.05598)

[32] F. Lekien; J. E. Marsden Tricubic interpolation in three dimensions, Int. J. Numer. Meth. Engng., Volume 63 (2005) no. 3, pp. 455-471 | DOI | MR | Zbl

[33] K. Onu; F. Huhn; G. Haller LCS Tool: A computational platform for Lagrangian coherent structures, J. Comput. Sci., Volume 7 (2015), pp. 26-36 | DOI

[34] K. Padberg-Gehle; C. Schneide Network-based study of Lagrangian transport and mixing, Nonlinear Process. Geophys., Volume 24 (2017) no. 4, pp. 661-671 | DOI

[35] L. Perko Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, Springer, 2001 | DOI | MR | Zbl

[36] W. H. Press; G. B. Rybicki Enhancement of Passive Diffusion and Suppression of Heat Flux in a Fluid with Time Varying Shear, Astrophys. J., Volume 248 (1981), pp. 751-766 | DOI | MR

[37] C. Rackauckas; Q. Nie DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia, J. Open Res. Softw., Volume 5 (2017) no. 1, p. 15 | DOI

[38] N. Schilling OceanTools.jl (2020) (https://github.com/CoherentStructures/OceanTools.jl)

[39] M. Serra; G. Haller Objective Eulerian coherent structures, Chaos, Volume 26 (2016) no. 5, 053110 | DOI | MR | Zbl

[40] M. Serra; G. Haller Efficient computation of null geodesics with applications to coherent vortex detection, Proc. A, R. Soc. Lond., Volume 473 (2017) no. 2199, 20160807 | DOI | MR | Zbl

[41] M. Serra; P. Sathe; F. Beron-Vera; G. Haller Uncovering the Edge of the Polar Vortex, J. Atmos. Sci., Volume 74 (2017) no. 11, pp. 3871-3885 | DOI

[42] M. Spivak A Comprehensive Introduction to Differential Geometry, 3, Publish or Perish Inc., 1999 | Zbl

[43] J.-L. Thiffeault Advection–diffusion in Lagrangian coordinates, Phys. Lett. A, Volume 309 (2003) no. 5–6, pp. 415-422 | DOI | MR | Zbl

[44] X. Tricoche; G. Scheuermann Topology simplification of symmetric, second-order 2D tensor fields, Geometric Modeling for Scientific Visualization (Mathematics and Visualization), Springer, 2004, pp. 275-291 | DOI

[45] X. Tricoche; G. Scheuermann; H. Hagen; St. Clauss, Data Visualization (2001), pp. 107-116 | DOI

[46] G. L. Wagner; N. C. Constantinou; M. Piibeleht FourierFlows/FourierFlows.jl: FourierFlows v0.3., 2019 (https://zenodo.org/record/2530192) | DOI

[47] T. Wischgoll; G. Scheuermann Detection and visualization of closed streamlines in planar flows, IEEE Trans. Visual. Comput. Graph., Volume 7 (2001) no. 2, pp. 165-172 | DOI

Cited by Sources: