We describe a new method for computing coherent Lagrangian vortices in two-dimensional flows according to any of the following approaches: black-hole vortices [24], objective Eulerian Coherent Structures (OECSs) [39], material barriers to diffusive transport [25, 26], and constrained diffusion barriers [26]. The method builds on ideas developed previously in [30], but our implementation alleviates a number of shortcomings and allows for the fully automated detection of such vortices on unprecedentedly challenging real-world flow problems, for which specific human interference is absolutely infeasible. Challenges include very large domains and/or parameter spaces. We demonstrate the efficacy of our method in dealing with such challenges on two test cases: first, a parameter study of a turbulent flow, and second, computing material barriers to diffusive transport in the global ocean.
Supplementary Materials:
Supplementary materials for this article are supplied as separate files:
DOI: 10.5802/smai-jcm.63
Mots-clés : Lagrangian coherent structures, coherent vortices, turbulent flows
Daniel Karrasch 1; Nathanael Schilling 1
@article{SMAI-JCM_2020__6__101_0, author = {Daniel Karrasch and Nathanael Schilling}, title = {Fast and robust computation of coherent {Lagrangian} vortices on very large two-dimensional domains}, journal = {The SMAI Journal of computational mathematics}, pages = {101--124}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {6}, year = {2020}, doi = {10.5802/smai-jcm.63}, mrnumber = {4100533}, zbl = {07207995}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/} }
TY - JOUR AU - Daniel Karrasch AU - Nathanael Schilling TI - Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains JO - The SMAI Journal of computational mathematics PY - 2020 SP - 101 EP - 124 VL - 6 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/ DO - 10.5802/smai-jcm.63 LA - en ID - SMAI-JCM_2020__6__101_0 ER -
%0 Journal Article %A Daniel Karrasch %A Nathanael Schilling %T Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains %J The SMAI Journal of computational mathematics %D 2020 %P 101-124 %V 6 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/ %R 10.5802/smai-jcm.63 %G en %F SMAI-JCM_2020__6__101_0
Daniel Karrasch; Nathanael Schilling. Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains. The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 101-124. doi : 10.5802/smai-jcm.63. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.63/
[1] Transport by Lagrangian Vortices in the Eastern Pacific, J. Phys. Ocean., Volume 48 (2018) no. 3, pp. 667-685 | DOI
[2] Detecting coherent structures using braids, Physica D, Volume 241 (2012) no. 2, pp. 95-105 | DOI
[3] Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets, Chaos, Volume 27 (2017) no. 3, 035804 | DOI | MR | Zbl
[4] Julia: A fresh approach to numerical computing, SIAM Rev., Volume 59 (2017) no. 1, pp. 65-98 | DOI | MR | Zbl
[5] NearestNeighbors.jl: High performance nearest neighbor data structures and algorithms for Julia, 2018 (https://github.com/kristofferc/nearestneighbors.jl)
[6] eqtools: Modular, extensible, open-source, cross-machine Python tools for working with magnetic equilibria, Comput. Phys. Commun., Volume 210 (2017), pp. 155-162 | DOI
[7] Formation of large-scale structures by turbulence in rotating planets, Ph. D. Thesis, National and Kapodistrian University of Athens (2015) | arXiv
[8] FourierFlows/GeophysicalFlows.jl: GeophysicalFlows v0.3.0, 2019 (https://github.com/fourierflows/geophysicalflows.jl) | DOI
[9] Indian-Atlantic interocean exchange: Dynamics, estimation and impact, J. Geophys. Res. Oceans, Volume 104 (1999) no. C9, pp. 20885-20910 | DOI
[10] , Proceedings of the conference on Visualization ’94 (1994), pp. 140-147 | DOI
[11] Limit-Cycles and Rotated Vector Fields, Ann. Math., Volume 57 (1953) no. 1, pp. 15-31 | DOI | MR | Zbl
[12] Shearless transport barriers in unsteady two-dimensional flows and maps, Physica D, Volume 278-279 (2014), pp. 44-57 | DOI | MR | Zbl
[13] An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Physica D, Volume 250 (2013) no. 0, pp. 1-19 | DOI | MR | Zbl
[14] Dynamic isoperimetry and the geometry of Lagrangian coherent structures, Nonlinearity, Volume 28 (2015) no. 10, pp. 3587-3622 | DOI | MR | Zbl
[15] Robust FEM-Based Extraction of Finite-Time Coherent Sets Using Scattered, Sparse, and Incomplete Trajectories, SIAM J. Appl. Dyn. Syst., Volume 17 (2018) no. 2, pp. 1891-1924 | DOI | MR | Zbl
[16] Coherent sets for nonautonomous dynamical systems, Physica D, Volume 239 (2010) no. 16, pp. 1527-1541 | DOI | MR
[17] A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, Volume 25 (2015) no. 8, 087406 | DOI | MR | Zbl
[18] Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification, Commun. Nonlinear Sci. Numer. Simul., Volume 77 (2019), pp. 81-107 | DOI | MR | Zbl
[19] Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos, Volume 20 (2010) no. 4, 043116 | DOI | MR | Zbl
[20] A critical comparison of Lagrangian methods for coherent structure detection, Chaos, Volume 27 (2017) no. 5, 053104 | DOI | MR | Zbl
[21] Geodesic Transport Barriers in Jupiter’s Atmosphere: A Video-Based Analysis, SIAM Rev., Volume 58 (2016) no. 1, pp. 69-89 | DOI | MR | Zbl
[22] Spectral-clustering approach to Lagrangian vortex detection, Phys. Rev. E, Volume 93 (2016), 063107 | DOI
[23] Geodesic theory of transport barriers in two-dimensional flows, Physica D, Volume 241 (2012) no. 20, pp. 1680-1702 | DOI | Zbl
[24] Coherent Lagrangian vortices: the black holes of turbulence, J. Fluid Mech., Volume 731 (2013), R4 | DOI | Zbl
[25] Material barriers to diffusive and stochastic transport, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 37, pp. 9074-9079 | DOI | MR | Zbl
[26] Barriers to the Transport of Diffusive Scalars in Compressible Flows (2019) (submitted preprint, https://arxiv.org/abs/1902.09786) | Zbl
[27] Lectures on differential geometry in the large, Lecture Notes in Mathematics, 1000, Springer, 1989 | DOI | MR
[28] Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices, Chaos, Volume 25 (2015) no. 8, 087405 | DOI | MR
[29] Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 113, Springer, 1991 | DOI | MR | Zbl
[30] Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows, Proc. A, R. Soc. Lond., Volume 471 (2015) no. 2173, 20140639 | DOI | MR | Zbl
[31] A geometric heat-flow theory of Lagrangian coherent structures (2016) (https://arxiv.org/abs/1608.05598)
[32] Tricubic interpolation in three dimensions, Int. J. Numer. Meth. Engng., Volume 63 (2005) no. 3, pp. 455-471 | DOI | MR | Zbl
[33] LCS Tool: A computational platform for Lagrangian coherent structures, J. Comput. Sci., Volume 7 (2015), pp. 26-36 | DOI
[34] Network-based study of Lagrangian transport and mixing, Nonlinear Process. Geophys., Volume 24 (2017) no. 4, pp. 661-671 | DOI
[35] Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, Springer, 2001 | DOI | MR | Zbl
[36] Enhancement of Passive Diffusion and Suppression of Heat Flux in a Fluid with Time Varying Shear, Astrophys. J., Volume 248 (1981), pp. 751-766 | DOI | MR
[37] DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia, J. Open Res. Softw., Volume 5 (2017) no. 1, p. 15 | DOI
[38] OceanTools.jl (2020) (https://github.com/CoherentStructures/OceanTools.jl)
[39] Objective Eulerian coherent structures, Chaos, Volume 26 (2016) no. 5, 053110 | DOI | MR | Zbl
[40] Efficient computation of null geodesics with applications to coherent vortex detection, Proc. A, R. Soc. Lond., Volume 473 (2017) no. 2199, 20160807 | DOI | MR | Zbl
[41] Uncovering the Edge of the Polar Vortex, J. Atmos. Sci., Volume 74 (2017) no. 11, pp. 3871-3885 | DOI
[42] A Comprehensive Introduction to Differential Geometry, 3, Publish or Perish Inc., 1999 | Zbl
[43] Advection–diffusion in Lagrangian coordinates, Phys. Lett. A, Volume 309 (2003) no. 5–6, pp. 415-422 | DOI | MR | Zbl
[44] Topology simplification of symmetric, second-order 2D tensor fields, Geometric Modeling for Scientific Visualization (Mathematics and Visualization), Springer, 2004, pp. 275-291 | DOI
[45] , Data Visualization (2001), pp. 107-116 | DOI
[46] FourierFlows/FourierFlows.jl: FourierFlows v0.3., 2019 (https://zenodo.org/record/2530192) | DOI
[47] Detection and visualization of closed streamlines in planar flows, IEEE Trans. Visual. Comput. Graph., Volume 7 (2001) no. 2, pp. 165-172 | DOI
Cited by Sources: