In this paper, we investigate the effect of the space and time discretisation on the convergence properties of Schwarz Waveform Relaxation (SWR) algorithms. We consider a reaction-diffusion problem with discontinuous coefficients discretised on two non-overlapping domains with several numerical schemes (in space and time). A methodology to determine the rate of convergence of the classical SWR method with standard interface conditions (Dirichlet-Neumann or Robin-Robin) accounting for discretisation errors is presented. We discuss how such convergence rates differ from the ones derived at a continuous level (i.e. assuming an exact discrete representation of the continuous problem). In this work we consider a second-order finite difference scheme and a finite volume scheme based on quadratic spline reconstruction in space, combined with either a simple backward Euler scheme or a two-step “Padé” scheme (resembling a Diagonally Implicit Runge Kutta scheme) in time. We prove those combinations of space-time schemes to be unconditionally stable on bounded domains. We illustrate the relevance of our analysis with specifically designed numerical experiments.
Mots-clés : Schwarz methods, Waveform relaxation, Semi-discrete
Simon Clement 1; Florian Lemarié 1; Eric Blayo 1
@article{SMAI-JCM_2022__8__99_0, author = {Simon Clement and Florian Lemari\'e and Eric Blayo}, title = {Discrete analysis of {Schwarz} waveform relaxation for a diffusion reaction problem with discontinuous coefficients}, journal = {The SMAI Journal of computational mathematics}, pages = {99--124}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {8}, year = {2022}, doi = {10.5802/smai-jcm.81}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/} }
TY - JOUR AU - Simon Clement AU - Florian Lemarié AU - Eric Blayo TI - Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients JO - The SMAI Journal of computational mathematics PY - 2022 SP - 99 EP - 124 VL - 8 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/ DO - 10.5802/smai-jcm.81 LA - en ID - SMAI-JCM_2022__8__99_0 ER -
%0 Journal Article %A Simon Clement %A Florian Lemarié %A Eric Blayo %T Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients %J The SMAI Journal of computational mathematics %D 2022 %P 99-124 %V 8 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/ %R 10.5802/smai-jcm.81 %G en %F SMAI-JCM_2022__8__99_0
Simon Clement; Florian Lemarié; Eric Blayo. Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 99-124. doi : 10.5802/smai-jcm.81. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.81/
[1] Weakly Chained Matrices, Policy Iteration, and Impulse Control, SIAM J. Numer. Anal., Volume 54 (2016) no. 3, pp. 1341-1364 | DOI | MR | Zbl
[2] Quasi-overlapping Semi-discrete Schwarz Waveform Relaxation Algorithms: The Hyperbolic Problem, Comput. Methods Appl. Math., Volume 20 (2020) no. 3, pp. 397-417 | DOI | MR | Zbl
[3] Diagonally Implicit Runge–Kutta Methods for Stiff O.D.E.’s, SIAM J. Numer. Anal., Volume 14 (1977) no. 6, pp. 1006-1021 | DOI | MR | Zbl
[4] et al. Reaction-diffusion equations and their applications to biology., Academic Press Inc., 1986 | MR
[5] Méthodes de décomposition de domaine de type relaxation d’ondes optimisées pour l’équation de convection-diffusion instationnaire discrétisée par volumes finis, Ph. D. Thesis, Paris 13 (2013) http://www.theses.fr/2013pa132055 (Thèse de doctorat dirigée par Omnes, P. et Japhet, C. Mathématiques appliquées Paris 13 2013)
[6] Space–Time Domain Decomposition with Finite Volumes for Porous Media Applications, Domain Decomposition Methods in Science and Engineering XXI, Springer (2014), pp. 567-575 | DOI | Zbl
[7] Fourier and Laplace Transforms, Cambridge University Press, 2003 | DOI
[8] Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations, Netw. Heterog. Media, Volume 5 (2010) no. 3, pp. 487-505 | DOI | MR | Zbl
[9] Code for Discrete analysis of SWR for a diffusion reaction problem with discontinuous coefficients, 2022 (https://zenodo.org/record/6324930) | DOI
[10] A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl., Volume 6 (1999) no. 2, pp. 125-145 | DOI | MR | Zbl
[11] Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM J. Numer. Anal., Volume 45 (2007) no. 2, pp. 666-697 | DOI | MR | Zbl
[12] Optimized Overlapping DDFV Schwarz Algorithms, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Springer (2020), pp. 365-373 | DOI | Zbl
[13] A Schwarz Waveform Relaxation Method for Advection—Diffusion—Reaction Problems with Discontinuous Coefficients and Non-matching Grids, Domain Decomposition Methods in Science and Engineering XVI, Springer (2007), pp. 283-290 | DOI
[14] Optimized Schwarz Algorithms in the Framework of DDFV Schemes, Domain Decomposition Methods in Science and Engineering XXI, Springer (2014), pp. 457-466 | DOI | Zbl
[15] Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., Volume 41 (2003) no. 5, pp. 1643-1681 | DOI | MR | Zbl
[16] Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains, BIT Numer. Math., Volume 61 (2021) no. 1, pp. 173-207 | DOI | MR | Zbl
[17] Fully Discrete Schwarz Waveform Relaxation on Two Bounded Overlapping Subdomains, Domain Decomposition Methods in Science and Engineering XXV, Springer (2020), pp. 159-166 | DOI
[18] On a Class of Padé Finite Volume Methods, J. Comput. Phys., Volume 156 (1999) no. 1, pp. 137-180 | DOI | MR | Zbl
[19] Stability constraints for oceanic numerical models: implications for the formulation of time and space discretizations, Ocean Modelling, Volume 92 (2015), pp. 124-148 | DOI
[20] Algorithmes de Schwarz et couplage océan-atmosphère, Theses, Université Joseph-Fourier - Grenoble I (2008) https://tel.archives-ouvertes.fr/tel-00343501
[21] A Multirate Neumann–Neumann Waveform Relaxation Method for Heterogeneous Coupled Heat Equations, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. S86-S105 | DOI | MR | Zbl
[22] Finite-difference schemes for the diffusion equation, Dynamical Systems, Plasmas and Gravitation, Springer (1999), pp. 82-92 | Zbl
[23] Recent Developments on Optimized Schwarz Methods, Domain Decomposition Methods in Science and Engineering XVI, Springer (2007), pp. 115-125 | DOI | MR
[24] Towards efficient interface conditions for a Schwarz domain decomposition algorithm for an advection equation with biharmonic diffusion, Appl. Numer. Math., Volume 60 (2010) no. 1, pp. 83-93 https://www.sciencedirect.com/science/article/pii/s0168927409001652 | DOI | MR | Zbl
[25] An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling, Ocean Modelling, Volume 91 (2015), pp. 38-69 https://www.sciencedirect.com/science/article/pii/s1463500315000530 | DOI
[26] Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften, 258, Springer, 1983 | DOI | Zbl
[27] Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numer. Algorithms (2021) | DOI
[28] Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations, BIT Numer. Math., Volume 54 (2014) no. 3, pp. 831-866 | MR | Zbl
[29] Optimized waveform relaxation methods for RC circuits: discrete case, ESAIM: M2AN, Volume 51 (2017) no. 1, pp. 209-223 | DOI | MR | Zbl
[30] A monotonically-damping second-order-accurate unconditionally-stable numerical scheme for diffusion, Quarterly Journal of the Royal Meteorological Society, Volume 133 (2007) no. 627, pp. 1559-1573 | arXiv | DOI
[31] Discrete transparent boundary conditions for parabolic systems, Math. Comput. Modelling, Volume 43 (2006) no. 3, pp. 294-309 | DOI | MR | Zbl
Cited by Sources: